10000000 (number)
This article is about the number. For the article on the baseball player, see Ten Million. For the article on the 2012 video game, see 10000000 (video game).
| 10000000 | |
|---|---|
| Cardinal | Ten million |
| Ordinal |
10000000th (ten millionth) |
| Factorization | 27 · 57 |
| Roman numeral | X |
| Binary | 1001100010010110100000002 |
| Ternary | 2002110011021013 |
| Quaternary | 2120211220004 |
| Quinary | 100300000005 |
| Senary | 5542001446 |
| Octal | 461132008 |
| Duodecimal | 342305412 |
| Hexadecimal | 98968016 |
| Vigesimal | 32A00020 |
| Base 36 | 5YC1S36 |
Ten million (10,000,000) is the natural number following 9999999 and preceding 10000001.
In scientific notation, it is written as 107.
In South Asia, it is known as the crore.
Selected 8-digit numbers (10,000,001–99,999,999)
- 10077696 = 69
- 10609137 – Leyland number
- 11111111 – repunit
- 11436171 – Keith number
- 11485154 – Markov number
- 11881376 = 265
- 12960000 = 604, (3·4·5)4, Plato's "nuptial number" (Republic VIII; see regular number)
- 12648430 – hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.
- 12988816 = the number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes
- 13782649 – Markov number
- 11390625 = 156
- 14348907 = 315
- 14352282 – Leyland number
- 14930352 – Fibonacci number
- 15485863 – 1,000,000th prime number
- 15994428 – Pell number
- 16609837 – Markov number
- 16769023 – Carol prime and an emirp
- 16777216 = 224 – hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics
- 16777792 – Leyland number
- 16785407 – Kynea number
- 16797952 – Leyland number
- 16964653 – Markov number
- 17210368 = 285
- 17650828 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88
- 18199284 – Motzkin number
- 19487171 = 117
- 19680277 – Wedderburn-Etherington number
- 19987816 – palindromic in 3 consecutive bases: 41AAA1413, 292429214, 1B4C4B115
- 20031170 – Markov number
- 20511149 = 295
- 21531778 – Markov number
- 21621600 – colossally abundant number, superior highly composite number
- 22222222 – repdigit
- 24137569 = 176
- 24157817 – Fibonacci number, Markov number
- 24300000 = 305
- 24678050 – equal to the sum of the eighth powers of its digits
- 27644437 – Bell number
- 28629151 = 315
- 31536000 – number of seconds in a year
- 33333333 – repdigit
- 33445755 – Keith number
- 33550336 – fifth perfect number
- 33554432 = 225 – Leyland number
- 33555057 – Leyland number
- 34012224 = 186
- 35831808 = 127
- 36614981 – alternating factorial
- 38613965 – Pell number, Markov number
- 39088169 – Fibonacci number
- 39135393 = 335
- 39916800 = 11!
- 39916801 – factorial prime
- 40353607 = 79
- 43046721 = 316
- 43050817 – Leyland number
- 43112609 – Mersenne Prime Exponent
- 43443858 – palindromic in 3 consecutive bases: 3C323C315, 296E69216, 1DA2AD117
- 43484701 – Markov number
- 44121607 – Keith number
- 44444444 – repdigit
- 45136576 – Leyland number
- 45435424 = 345
- 46026618 – Wedderburn-Etherington number
- 46656000 = 3603
- 47045881 = 196
- 48828125 = 511
- 48928105 – Markov number
- 48989176 – Leyland number
- 50852019 – Motzkin number
- 52521875 = 355
- 55555555 – repdigit
- 60466176 – 610
- 61466176 – Leyland number
- 62748517 = 137
- 63245986 – Fibonacci number, Markov number
- 64000000 = 206 – vigesimal "million" (1 alau in Mayan, 1 poaltzonxiquipilli in Nahuatl)
- 66666666 – repdigit
- 67092479 – Carol number
- 67108864 = 226
- 67109540 – Leyland number
- 67125247 – Kynea number
- 67137425 – Leyland number
- 69343957 = 375
- 73939133 – the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes
- 77777777 – repdigit
- 78442645 – Markov number
- 79235168 = 385
- 85766121 – 216
- 87539319 – taxicab number
- 88888888 – repdigit
- 90224199 = 395
- 93222358 – Pell number
- 94418953 – Markov number
- 99999989 - Greatest prime number with 8 digits[1]
- 99999999 – repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman
References
- ↑ "greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.
| ||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.