Coffee furanone

Coffee furanone
Names
IUPAC name
2-Methyldihydrofuran-3(2H)-one
Other names
2-Methyltetrahydrofuran-3-one; 2-Methyl-3-oxotetrahydrofuran; 2-Methyltetrahydro-3-furanone; Dihydro-2-methyl-3-furanone; 2-Methyloxolan-3-one
Identifiers
3188-00-9 YesY
ChemSpider 17494
Jmol interactive 3D Image
PubChem 18522
Properties
C5H8O2
Molar mass 100.12 g·mol−1
Density 1.040 g/cm3 (20 °C)
Boiling point 139 °C (282 °F; 412 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Coffee furanone (2-methyltetrahydrofuran-3-one) is a pleasant smelling liquid furan derivative which is a volatile constituent of the aroma complex of roasted coffee.[1] Coffee furanone is less odorous than furfuryl mercaptan, which with an odor threshold of 0.005 ppb was the first high impact aroma chemical, but has a very pleasant sweet caramel character, with some nuttiness.[2]

Synthesis

Coffee furnone was synthesized in 1963 by Wynberg via acid-catalyzed ring closure of β-alkoxy diazoketones.[3] Coffee furanone has also been prepared via the condensation of ethyl lactate and methyl acrylate in DMSO solution[4] and (under phase transfer conditions) in ionic liquids.[5] A related lactic acid synthesis was described as having the advantages of a simple process, high conversion rate, low pollution, and low cost.[6] This compound has also been prepared in acceptable yield via oxidative hydroxylation of the 2-acetylbutyrolactone.[7] Further approaches to the synthesis of coffee furanone involved the hydrolysis of the corresponding dithioketals[8] and the oxidation of 2-methyltetrahydrofuran employing lithium hypochlorite in the presence of ruthenium catalysts.[9]

Applications

The synthetic version of this natural flavorant and odorant is used in a variety of food and beverage applications, including coffee, nuts, cocoa, brandy, meat sauces and as a general food flavorant at a typical dosage (about 5-20 ppm), similar to the natural concentration (30 ppm) of coffee furanone in roasted coffee.[10][11]

References

  1. M. A. Gianturco; Friedel, P.; Giammarino, A. S. (1964). "Volatile constituents of coffee. III. Structures of two heterocyclic compounds and the synthesis of tetrahydrofuranones". Tetrahedron 20 (7): 1763–1772. doi:10.1016/s0040-4020(01)99177-x.
  2. Leo M. L. Nollet, Terri Boylston, "Handbook of meat, poultry and seafood quality" page 137-138 (2007)
  3. H. Wynberg (1963). "Tetrahydrofuran-3-one, spirans, and dithienyls". Angewandte Chemie 75 (10): 453. doi:10.1002/ange.19630751014.
  4. M. A. Gianturco; Friedel, P.; Giammarino, A. S. (1964). "Volatile constituents of coffee. III. Structures of two heterocyclic compounds and the synthesis of tetrahydrofuranones". Tetrahedron 20 (7): 1763–1772. doi:10.1016/s0040-4020(01)99177-x.
  5. Xiaogeng Liu; Chen, Yousheng (2005). "Synthesis of 2-methyltetrafuran-3-one from ethyl lactate and methyl acrylate.". Shipin Kexue (Beijing, China) 26 (5): 165–167.
  6. Cunzhao Cheng "Synthesis method of natural flavoring 2-methyltetrahydrofuran-3-one", Zhuanli Shenging Gonkai Shuomingshu, CN Patent 2009:1544311 (2009)
  7. Valentine Ragoussis; Lagouvardos, Dimitrios J.; Ragoussis, Nikitas (1998). "A short and efficient synthesis of 2-methyltetrahydrofuran-3-one". Synthetic Communications 28 (22): 4273–4278. doi:10.1080/00397919809458708.
  8. Bonkoch Tarnchompoo; Thebtaranonth, Yodhathai (1984). "A condensed synthesis of dihydro-3(2H)-furanone". Tetrahedron Letters 25 (48): 5567–70. doi:10.1016/s0040-4039(01)81628-2.
  9. Mario Bressan; Morvillo, Antonino; Romanello, Giorgio (1990). "Selective oxygenation of aliphatic ethers catalyzed by ruthenium(II) complexes". Inorganic Chemistry 29 (16): 2976–2979. doi:10.1021/ic00341a024.
  10. M. A. Gianturco; Friedel, P.; Giammarino, A. S. (1964). "Volatile constituents of coffee. III. Structures of two heterocyclic compounds and the synthesis of tetrahydrofuranones". Tetrahedron 20 (7): 1763–1772. doi:10.1016/s0040-4020(01)99177-x.
  11. R. Silwar; Kamperschroer, H.; Tressl, R. (1987). "Gas chromatographic-mass spectrometric study of roasted coffee aroma - quantitative determination of steam-volatile aroma constituents". Chemie, Mikrobiologie, Technologie der Lebensmittel 10 (5-6): 176–187.
This article is issued from Wikipedia - version of the Tuesday, July 07, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.