ARHGEF5
Rho guanine nucleotide exchange factor (GEF) 5 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||
Symbols | ARHGEF5 ; GEF5; P60; TIM; TIM1 | ||||||||||||
External IDs | OMIM: 600888 MGI: 1858952 HomoloGene: 66300 GeneCards: ARHGEF5 Gene | ||||||||||||
| |||||||||||||
RNA expression pattern | |||||||||||||
More reference expression data | |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 7984 | 54324 | |||||||||||
Ensembl | ENSG00000050327 | ENSMUSG00000033542 | |||||||||||
UniProt | Q12774 | n/a | |||||||||||
RefSeq (mRNA) | NM_001002861 | NM_133674 | |||||||||||
RefSeq (protein) | NP_005426 | NP_598435 | |||||||||||
Location (UCSC) |
Chr 7: 144.36 – 144.38 Mb |
Chr 6: 43.27 – 43.29 Mb | |||||||||||
PubMed search | |||||||||||||
Rho guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the ARHGEF5 gene.[1][2][3]
Rho GTPases play a fundamental role in numerous cellular processes initiated by extracellular stimuli that work through G protein-coupled receptors. The encoded protein may form a complex with G proteins and stimulate Rho-dependent signals. This protein may be involved in the control of cytoskeletal organization.[3]
References
- ↑ Chan AM, McGovern ES, Catalano G, Fleming TP, Miki T (Apr 1994). "Expression cDNA cloning of a novel oncogene with sequence similarity to regulators of small GTP-binding proteins". Oncogene 9 (4): 1057–63. PMID 8134109.
- ↑ Takai S, Chan AM, Yamada K, Miki T (Oct 1995). "Assignment of the human TIM proto-oncogene to 7q33→q35". Cancer Genet Cytogenet 83 (1): 87–9. doi:10.1016/S0165-4608(95)00017-8. PMID 7656213.
- 1 2 "Entrez Gene: ARHGEF5 Rho guanine nucleotide exchange factor (GEF) 5".
Further reading
- Snyder JT, Worthylake DK, Rossman KL; et al. (2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors.". Nat. Struct. Biol. 9 (6): 468–75. doi:10.1038/nsb796. PMID 12006984.
- Wistow G, Bernstein SL, Wyatt MK; et al. (2002). "Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants.". Mol. Vis. 8: 171–84. PMID 12107413.
- Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Hillier LW, Fulton RS, Fulton LA; et al. (2003). "The DNA sequence of human chromosome 7.". Nature 424 (6945): 157–64. doi:10.1038/nature01782. PMID 12853948.
- Ota T, Suzuki Y, Nishikawa T; et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA; et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Umetsu DT, Dekruyff RH (2005). "Regulation of tolerance in the respiratory tract: TIM-1, hygiene, and the environment.". Ann. N. Y. Acad. Sci. 1029 (1): 88–93. doi:10.1196/annals.1309.012. PMID 15681748.
- Benzinger A, Muster N, Koch HB; et al. (2005). "Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer.". Mol. Cell Proteomics 4 (6): 785–95. doi:10.1074/mcp.M500021-MCP200. PMID 15778465.
- Zhang Y, Wolf-Yadlin A, Ross PL; et al. (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.". Mol. Cell Proteomics 4 (9): 1240–50. doi:10.1074/mcp.M500089-MCP200. PMID 15951569.
This article is issued from Wikipedia - version of the Wednesday, April 29, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.