Abstract elementary class

In model theory, a discipline within mathematical logic, an abstract elementary class, or AEC for short, is a class of models with a partial order similar to the relation of an elementary substructure of an elementary class in first-order model theory. They were introduced by Saharon Shelah.[1]

Definition

\langle K, \prec_K\rangle, for K a class of structures in some language L = L(K), is an AEC if it has the following properties:

Note that we usually do not care about the models of size less than the Löwenheim–Skolem number and often assume that there are none (we will adopt this convention in this article). This is justified since we can always remove all such models from an AEC without influencing its structure above the Löwenheim–Skolem number.

A K-embedding is a map f: M \rightarrow N for M, N \in K such that f[M] \prec_K N and f is an isomorphism from M onto f[M]. If K is clear from context, we omit it.

Examples

The following are examples of abstract elementary classes:[2]

Common assumptions

AECs are very general objects and one usually make some of the assumptions below when studying them:

Note that in elementary classes, joint embedding holds whenever the theory is complete, while amalgamation and no maximal models are well-known consequences of the compactness theorem. These three assumptions allow us to build a universal model-homogeneous monster model \mathfrak{C}, exactly as in the elementary case.

Another assumption that one can make is tameness.

Shelah's categoricity conjecture

Shelah introduced AECs to provide a uniform framework in which to generalize first-order classification theory. Classification theory started with Morley's categoricity theorem, so it is natural to ask whether a similar result holds in AECs. This is Shelah's eventual categoricity conjecture. It states that there should be a Hanf number for categoricity:

For every AEC K there should be a cardinal \mu depending only on \operatorname{LS}(K) such that if K is categorical in some \lambda \geq \mu (i.e. K has exactly one (up to isomorphism) model of size \lambda), then K is categorical in \theta for all \theta \ge \mu.

Shelah also has several stronger conjectures: The threshold cardinal for categoricity is the Hanf number of psedo elemtary classes in a language of cardinality LS(K). More specifically when the class is in a countable lenguage and axiomaziable by an L_{\omega_1,\omega} sentence the threshold number for categoricity is \beth_{\omega_1}. This conjecture dates back to 1976.

Several approximations have been published (see for example the results section below), assuming set-theoretic assumptions (such as the existence of large cardinals or variations of the generalized continuum hypothesis), or model-theoretic assumptions (such as amalgamation or tameness). As of 2014, the original conjecture remains open.

Results

The following are some important results about AECs. Except for the last, all results are due to Shelah.

See also

Notes

  1. Shelah 1987.
  2. Grossberg 2002, Section 1.
  3. Grossberg 2002, Theorem 3.4.
  4. Grossberg 2002, Corollary 3.5. Note that there is a typo there and that 2^{2^{\operatorname{LS}(K)}} should be replaced by 2^{\operatorname{LS}(K)}.
  5. Grossberg 2002, Theorem 4.3.
  6. Grossberg 2002, Theorem 5.1.
  7. Shelah 1999.
  8. This is due to Will Boney, but combines results of many people, including Grossberg, Makkai, Shelah, and VanDieren. A proof appears in Boney 2014, Theorem 7.5.

References

This article is issued from Wikipedia - version of the Sunday, February 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.