Hexafluorosilicic acid

Hexafluorosilicic acid
Names
Preferred IUPAC name
Hexafluorosilicic acid
Systematic IUPAC name
Dihydrogen hexafluorosilicate
Other names
Fluorosilicic acid, fluosilic acid, hydrofluorosilicic acid, silicofluoride, silicofluoric acid, oxonium hexafluorosilanediuide, oxonium hexafluoridosilicate(2−)
Identifiers
16961-83-4 YesY
ChemSpider 17215660 YesY
EC Number 241-034-8
Jmol 3D model Interactive image
Interactive image
PubChem 21863527
RTECS number VV8225000
UN number 1778
Properties
F6H2Si
Molar mass 144.09 g·mol−1
Appearance transparent, colorless, fuming liquid
Odor sour, pungent
Density 1.22 g/cm3 (25% soln.)
1.38 g/cm3 (35% soln.)
1.46 g/cm3 (61% soln.)
Melting point ca. 19 °C (66 °F; 292 K) (60–70% solution)
< −30 °C (−22 °F; 243 K) (35% solution) 
Boiling point 108.5 °C (227.3 °F; 381.6 K) (decomposes)
miscible
1.3465
Structure
Octahedral SiF62
Hazards
Safety data sheet External MSDS
T – Toxic
C – Corrosive
R-phrases R34, R25
S-phrases (S1/2), S26, S27, S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
0
3
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
430 mg/kg (oral, rat)
Related compounds
Other cations
Ammonium hexafluorosilicate

Sodium fluorosilicate

Related compounds
Hexafluorophosphoric acid
Fluoroboric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Hexafluorosilicic acid is an inorganic compound with the chemical formula (H
3
O)
2
SiF
6
(also written as (H
3
O)
2
[SiF
6
]
). It is a colorless liquid rarely encountered undiluted. Hexafluorosilicic acid has a distinctive sour taste and pungent smell. It is mainly produced as a precursor to aluminum trifluoride and synthetic cryolite. It is commonly used as a source of fluoride for water fluoridation.[1][2] Concentrated hexafluorosilicic acid is corrosive, highly toxic and can attack the skin, but in everyday use, it is so diluted as to be harmless.

In aqueous solution, the hydronium cation (H3O+) is traditionally equated with a solvated proton, and as such, the formula for this compound is often written as H
2
SiF
6
. Extending that metaphor, the isolated compound is then written as H
2
SiF
6
·2H
2
O
.

Structure

In solid hexafluorosilicic acid, the component ions form a network, being connected by ionic bonds. In the liquid phase, the oxonium ions react reversibly with the hexafluoridosilicate(1−) ions, producing water and various protonated silicon complexes. These complexes undergo decomposition reversibly, producing a small concentration of hydrogen fluoride. The result is a complex mixture containing water, hydrogen fluoride, tetrafluorosilane, and other related species, all in dynamic equilibrium. Therefore, unless the liquid phase is kept in a sealed container, the differing volatilities will cause the hexafluorosilicic acid to degrade rapidly. Hexafluorosilicic acid is only available commercially as an equilibrium mixture in an aqueous solution or other solvents that contain strong proton donors[3] at low pH (acids described similarly include chloroplatinic acid, fluoroboric acid, and hexafluorophosphoric acid, and, more commonly, carbonic acid). Purifying hexafluorosilicic acid by using distillation has not proven possible, all reported attempts has only yielded the decomposition products, which are HF, SiF
4
, and water. In this octahedral anion, the Si–F bond distances are 1.71 Å.[4]

Production and principal reactions

The commodity chemical hydrogen fluoride is produced from fluorspar by treatment with sulfuric acid.[5] As a by product, approximately 50 kg of (H3O)2SiF6 is produced per tonne of HF owing to reactions involving silica-containing mineral impurities. (H3O)2SiF6 is also produced as a by-product from the production of phosphoric acid from apatite and fluorapatite. Again, some of the HF in turn reacts with silicate minerals, which are an unavoidable constituent of the mineral feedstock, to give silicon tetrafluoride. Thus formed, the silicon tetrafluoride reacts further with HF. The net process can be described as:[6]

SiO
2
+ 6 HF → SiF2−
6
+ 2 H
3
O+

Hexafluorosilicic acid can also be produced by treating silicon tetrafluoride with hydrofluoric acid.

Neutralization of solutions of hexafluorosilicic acid with alkali metal bases produces the corresponding alkali metal fluorosilicate salts:

(H3O)2SiF6 + 2 NaOH → Na2SiF6 + 4 H2O

The resulting salt Na2SiF6 is mainly used in water fluoridation. Related ammonium and barium salts are produced similarly for other applications.

Near neutral pH, hexafluorosilicate salts hydrolyze rapidly according to this equation:[7]

SiF2−
6
+ 2 H2O → 6 F + SiO2 + 4 H+

Uses

The majority of the hexafluorosilicic acid is converted to aluminium fluoride and cryolite.[6] These materials are central to the conversion of aluminium ore into aluminium metal. The conversion to aluminium trifluoride is described as:

H2SiF6 + Al2O3 → 2 AlF3 + SiO2 + H2O

Hexafluorosilicic acid is also converted to a variety of useful hexafluorosilicate salts. The potassium salt is used in the production of porcelains, the magnesium salt for hardened concretes and as an insecticide, and the barium salts for phosphors.

Hexafluorosilicic acid is also commonly used for water fluoridation in several countries including the United States, the United Kingdom, and the Republic of Ireland. In the U.S., about 40,000 tons of fluorosilicic acid is recovered from phosphoric acid plants, and then used primarily in water fluoridation, sometimes after being processed into sodium silicofluoride.[5] In this application, the hexafluorosilicic acid converts to the fluoride ion (F), which is the active agent for the protection of teeth.

Hexafluorosilicic acid is also used as an electrolyte in the Betts electrolytic process for refining lead.

Hexafluorosilicic acid (identified as hydrofluorosilicic acid on the label) along with oxalic acid are the active ingredients used in Iron Out rust-removing cleaning products.

Niche applications

H2SiF6 is a specialized reagent in organic synthesis for cleaving Si–O bonds of silyl ethers. It is more reactive for this purpose than HF. It reacts faster with t-butyldimethysilyl (TBDMS) ethers than triisopropylsilyl (TIPS) ethers.[8]

Hexafluorosilicic acid and the salts are used as wood preservation agents.[9]

Safety

Hexafluorosilicic acid can release hydrogen fluoride when evaporated, so it has similar risks. It is corrosive and may cause fluoride poisoning; inhalation of the vapors may cause lung edema. Like hydrogen fluoride, it attacks glass and stoneware.[10] The LD50 value of hexafluorosilicic acid is 70 mg/kg.[11][12]

See also

References

  1. "CDC - Water Fluoridation Additives - Engineering Fact Sheet - Community Water Fluoridation - Oral Health". Cdc.gov. Retrieved 2015-03-10.
  2. The New Zealand Institute of Chemistry (NZIC) - Hydrofluorosilic acid and water fluoridation hydrofluorosilic acid.
  3. J. P. Nicholson (2005). "Electrodeposition of Silicon from Nonaqueous Solvents". J. Electrochem. Soc. 152 (12): C795–C802. doi:10.1149/1.2083227.
  4. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  5. 1 2 USGS. Fluorspar.
  6. 1 2 Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R.; Cuer, J. P. (2005). "Fluorine Compounds, Inorganic". Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_307.
  7. Finney, William F.; Wilson, Erin; Callender, Andrew; Morris, Michael D.; Beck, Larry W. (2006). "Reexamination of Hexafluorosilicate Hydrolysis by 19F NMR and pH Measurement". Environ. Sci. Technol 40 (8): 2572–2577. doi:10.1021/es052295s.
  8. Pilcher, A. S.; DeShong, P. (2001). "Fluorosilicic Acid". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rf013.
  9. Carsten Mai, Holger Militz (2004). "Modification of wood with silicon compounds. inorganic silicon compounds and sol-gel systems: a review". Wood Science and Technology 37 (5): 339. doi:10.1007/s00226-003-0205-5.
  10. "CDC – Fluorosilicic Acid – International Chemical Safety Cards - NIOSH". Cdc.gov. Retrieved 2015-03-10.
  11. Archived October 22, 2012, at the Wayback Machine.
  12. "Material Safety Data Sheet : Caffeine MSDS". Sciencelab.com. Retrieved 2015-03-10.
This article is issued from Wikipedia - version of the Wednesday, April 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.