Adaptive projected subgradient method

The adaptive projected subgradient method (APSM) is an algorithm, the goal of which is to minimize iteratively a sequence of cost functions.[1][2][3]

This algorithmic "tool" is general and has been used in several tasks, such as online/adaptive parameter estimation, online classification,[4] [5] and adaptive distributed learning.[6] The algorithm can be used in both linear and non-linear scenarios (using kernels[7][8][9][10]).

References

  1. Yamada, I.; Ogura, N. (2003). "Adaptive projected subgradient method and its applications to set theoretic adaptive filtering". The Thirty-seventh Asilomar Conference on Signals, Systems & Computers, 2003. p. 600. doi:10.1109/ACSSC.2003.1291982. ISBN 0-7803-8104-1.
  2. Yamada, I.; Ogura, N. (2005). "Adaptive Projected Subgradient Method for Asymptotic Minimization of Sequence of Nonnegative Convex Functions". Numerical Functional Analysis and Optimization 25 (7–8): 593. doi:10.1081/NFA-200045806.
  3. Slavakis, Konstantinos; Yamada, Isao (5 August 2011). "The adaptive projected subgradient method constrained by families of quasi-nonexpansive mappings and its application to online learning". Ithaca, New York: Cornell University.
  4. Slavakis, Konstantinos, Sergios Theodoridis, and Isao Yamada. "Online kernel-based classification using adaptive projection algorithms." Signal Processing, IEEE Transactions on 56.7 (2008): 2781-2796.
  5. OĞUZ, ÖZKAN. PERFORMANCE OF A NON-LINEAR ADAPTIVE BEAMFORMER ALGORITHM FOR SIGNAL-OF-INTEREST EXTRACTION. Diss. MIDDLE EAST TECHNICAL UNIVERSITY, 2015.
  6. Chouvardas, Symeon, Konstantinos Slavakis, and Sergios Theodoridis. "Adaptive robust distributed learning in diffusion sensor networks." Signal Processing, IEEE Transactions on 59.10 (2011): 4692-4707.
  7. Slavakis, K.; Bouboulis, P.; Theodoridis, S. (2012-02-01). "Adaptive Multiregression in Reproducing Kernel Hilbert Spaces: The Multiaccess MIMO Channel Case". IEEE Transactions on Neural Networks and Learning Systems 23 (2): 260–276. doi:10.1109/TNNLS.2011.2178321. ISSN 2162-237X.
  8. Bouboulis, P.; Slavakis, K.; Theodoridis, S. (2012-03-01). "Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients". IEEE Transactions on Neural Networks and Learning Systems 23 (3): 425–438. doi:10.1109/TNNLS.2011.2179810. ISSN 2162-237X.
  9. Theodoridis, Sergios (2013). Academic Press Library in Signal Processing. CHAPTER 17 Online Learning in Reproducing Kernel Hilbert Spaces- Konstantinos Slavakis, Pantelis Bouboulis and Sergios Theodoridis: ACADEMIC PRESS. ISBN 978-0-12-397226-2.
  10. "Source code for Kernel APSM".
This article is issued from Wikipedia - version of the Thursday, December 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.