Affine q-Krawtchouk polynomials
In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by ]][1]
Relation to other polynomials
Affine q-Krawtchouk polynomials → Little q-Laguerre polynomials:
References
- ↑ Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analogues, p501,Springer,2010
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Affine q-Krawtchouk polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248
- Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 608153
This article is issued from Wikipedia - version of the Sunday, May 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.