Alessio Figalli
Alessio Figalli | |
---|---|
Born |
Rome, Italy | 2 April 1984
Nationality | Italian |
Fields | Mathematics |
Institutions | University of Texas, Austin |
Alma mater |
Scuola Normale Superiore di Pisa École normale supérieure de Lyon |
Doctoral advisor |
Luigi Ambrosio Cédric Villani |
Doctoral students | Eric Baer, Emanuel Indrei, Diego Marcon, Levon Nurbekyan, Maria Colombo |
Notable awards |
Prix and Cours Peccot (2012) EMS Prize (2012) Stampacchia Medal (2015) |
Alessio Figalli (born 2 April 1984) is an Italian mathematician working primarily on calculus of variations and partial differential equations. He has been awarded the Prix and Cours Peccot in 2012, the EMS Prize in 2012,[1] and the Stampacchia Medal in 2015.[2] He has been an invited speaker at the International Congress of Mathematicians 2014.[3]
Biography
Figalli received his master's degree in mathematics from the Scuola Normale Superiore di Pisa in 2006, and earned his doctorate in 2007 under the supervision of Luigi Ambrosio at the Scuola Normale Superiore di Pisa and Cédric Villani at the École Normale Supérieure de Lyon. In 2007 he was appointed Chargé de recherche at the French National Centre for Scientific Research, in 2008 he went to the École polytechnique as Professeur Hadamard. He has been a professor at University of Texas at Austin since 2009. Starting from 2013 he holds the R. L. Moore Chair. Amongst his several recognitions, Figalli has won an EMS Prize in 2012, he has been awarded the Peccot-Vimont Prize 2011 and Cours Peccot 2012 of the Collège de France and has been appointed Nachdiplom Lecturer in 2014 at ETH Zürich.[4] He has won the 2015 edition of the Stampacchia Medal.
Work
Figalli has worked in the theory of optimal transport, with particular emphasis on the regularity theory of optimal transport maps and its connections to Monge–Ampère equations. Amongst the results he obtained in this direction, there stand out an important higher integrability property of the second derivatives of solutions to the Monge–Ampère equation [5] and a partial regularity result for Monge-Ampère type equations,[6] both proved together with Guido De Philippis. He used optimal transport techniques to get improved versions of the anisotropic isoperimetric inequality, and obtained several other important result on the stability of functional and geometric inequalities. In particular, together with Francesco Maggi and Aldo Pratelli, he proved a sharp quantitative version of the anisotropic isoperimetric inequality.[7] He also worked on Hamilton–Jacobi equations and their connections to weak KAM theory. In a paper with Gonzalo Contreras and Ludovic Rifford, he proved generic hyperbolicity of Aubry sets on compact surfaces.[8]
References
- ↑ "6th European Congress of Mathematics" (PDF). European mathematical Society. Retrieved 13 March 2013.
- ↑ 2015 Stampacchia Medal winner citation
- ↑ "ICM 2014".
- ↑ "ETH Lectures in Mathematics".
- ↑ "W 2,1 regularity for solutions of the Monge–Ampère equation". Inventiones Mathematicae. Retrieved 26 April 2012.
- ↑ "Partial regularity for optimal transport maps". Publications mathématiques de l'IHÉS. Retrieved 29 July 2014.
- ↑ "A mass transportation approach to quantitative isoperimetric inequalities". Inventiones Mathematicae. Retrieved 1 June 2010.
- ↑ "Generic hyperbolicity of Aubry sets on surfaces". Inventiones Mathematicae. Retrieved 24 June 2014.
External links
|