All nearest smaller values

In computer science, the all nearest smaller values problem is the following task: for each position in a sequence of numbers, search among the previous positions for the last position that contains a smaller value. This problem can be solved efficiently both by parallel and non-parallel algorithms: Berkman, Schieber & Vishkin (1993), who first identified the procedure as a useful subroutine for other parallel programs, developed efficient algorithms to solve it in the Parallel Random Access Machine model; it may also be solved in linear time on a non-parallel computer using a stack-based algorithm. Later researchers have studied algorithms to solve it in other models of parallel computation.

Example

Suppose that the input is the binary van der Corput sequence

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15.

The first element of the sequence (0) has no previous value. The nearest (only) smaller value previous to 8 and to 4 is 0. All three values previous to 12 are smaller, but the nearest one is 4. Continuing in the same way, the nearest previous smaller values for this sequence (indicating the nonexistence of a previous smaller value by a dash) are

—, 0, 0, 4, 0, 2, 2, 6, 0, 1, 1, 5, 1, 3, 3, 7.

In most applications, the positions of the nearest smaller values, and not the values themselves, should be computed, and in many applications the same computation should be computed for the reversal of the sequence in order to find the following smaller value that is closest in the sequence.

Applications

Berkman, Schieber & Vishkin (1993) mention many other problems that may be solved efficiently in parallel using a nearest smaller values computation. Among them, they include the following:

Similar techniques may also be applied to problems of polygon triangulation, convex hull construction (parallelizing the sequential Graham scan convex hull algorithm), reconstruction of trees from two of the trees' traversal orderings, and quadtree construction.[1]

Sequential algorithm

On a sequential computer, it is straightforward to compute all nearest smaller values using a stack data structure: one processes the values in sequence order, using the stack to maintain a subsequence of the values that have been processed so far and are smaller than any later value that has already been processed. In pseudocode, the algorithm is as follows.

S = new empty stack data structure
for x in the input sequence:
    while S is nonempty and the top element of S is greater than or equal to x:
        pop S
    if S is empty:
        x has no preceding smaller value
    else:
        the nearest smaller value to x is the top element of S
    push x onto S

Despite having a nested loop structure, the running time of this algorithm is linear, because every iteration of the inner loop removes an item that had been added in some previous iteration of the outer loop. It is closely related to an algorithm of Knuth for sorting with a stack (for inputs that can be sorted in this way).[2]

An even simpler linear-time sequential algorithm (Barbay, Fischer & Navarro (2012), Lemma 1) does not even need a stack; it assumes that the input sequence is given as an array A[1,n], and stores the index j of the preceding smaller value of the i'th value A[i] in P[i]. We assume an artificial overall minimum at A[0]:

for i from 1 to n:
    j = i-1
    while A[j] >= A[i]:
        j = P[j]
    P[i] = j

Parallel algorithms

Berkman, Schieber & Vishkin (1993) showed how to solve the all nearest smaller values problem efficiently on a concurrent-read concurrent-write Parallel Random Access Machine. For a sequence of n values, stored as an array, they show that the problem may be solved in time O(log log n) using a linear amount of total work. For sequences where all values are integers in the interval [1,s], Berkman, Matias & Ragde (1998) improved this bound to O(log log log s); they also showed that, for sufficiently large values of s, the previous doubly logarithmic time bound is the best that can be achieved for the problem. Since this work, parallel algorithms for the all nearest smaller values problem have also been developed on other models of parallel computation, including parallel computers with a hypercube-structured communications network,[3] and the bulk synchronous parallel model.[4]

Notes

References

This article is issued from Wikipedia - version of the Tuesday, February 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.