Aminocyclitol
The aminocyclitols are compounds related to cyclitols. They possess features of relative and absolute configuration that are characteristic of their class and have been extensively studied; but these features are not clearly displayed by general methods of stereochemical nomenclature, so that special methods of specifying their configuration are justified and have long been used. In other than stereochemical respects, their nomenclature should follow the general rules of organic chemistry.[1]
Aminocyclitol natural products
The aminocyclitol family of natural products is a class of sugar-derived microbial secondary metabolites that demonstrate significant biological activities. Aminocyclitols are found as a component of aminoglycoside antibiotics which is also called as pseudosugars or pseudosaccharides. Aminocyclitols have chemical structures of a carbon ring with amine functional group(s). The class of aminocyclitol containing natural products can be divided by ring sizes or types of precursors.
Five-membered ring aminocyclitols
pactamycin
Six-membered ring aminocyclitols
- 2-deoxy-scyllo-inosose derived aminoglycosides
This class includes kanamycin, neomycin, gentamicin, apramycin, hygromycin.
- myo-inositol 1-phosphate derived aminoglycosides
This class includes streptomycin, spectinomycin.
- sedoheptulose 7-phosphate derived C7N aminocyclitol natural products
This class includes acarbose, validamycin, validoxylamine A,[2] salbostatin, cetoniacytone A,[3] pyralomicin 1a,[4] kirkamide[5]
Biosynthesis of C7N aminocyclitols
Sedoheptulose 7-phosphate, a pentose phosphate pathway intermediate, is a common precursor of C7N aminocyclitol moiety of natural products, such as acarbose,[6] validamycin A,[7] salbostatin,[8] cetoniacytone A,[9][10] and pyralomicin 1a.[11] 2-epi-5-epi-valiolone synthase (EEVS),[6][12][13] one of the sugar phosphate cyclase family enzyme[9] and which is a homolog of 3-dehydroquinate synthase in shikimate pathway, catalyzes the formation of a common intermediate, 2-epi-5-epi-valiolone from sedoheptulose 7-phosphate. After multiple enzyme reaction steps, which include phosphorylation,[14][15] epimerization,[16] dehydration, and keto-reduction reactions, valienol, an important core structure is formed which leads to the formation of C7N aminocyclitol containing natural products. In validamycin biosynthesis, the C-N linkage which connect the C7 cyclitol moiety to the other was found to be formed by unprecedented actions of nucleotidyltransferase[17] and glycosyltransferase-like enzymes[18][19][20] (which is termed pseudoglycosyltransferase).
References
- ↑ "cyclitols". www.chem.qmul.ac.uk. Retrieved 2016-01-08.
- ↑ Asamizu, Shumpei; Abugreen, Mostafa; Mahmud, Taifo (2013). "Comparative metabolomic analysis of an alternative biosynthetic pathway to pseudosugars in Actinosynnema mirum DSM 43827". Chembiochem: A European Journal of Chemical Biology 14 (13): 1548–1551. doi:10.1002/cbic.201300384.
- ↑ Schlörke, Oliver; Krastel, Philipp; Müller, Ilka; Usón, Isabel; Dettner, Konrad; Zeeck, Axel (2002). "Structure and biosynthesis of cetoniacytone A, a cytotoxic aminocarba sugar produced by an endosymbiontic Actinomyces". The Journal of Antibiotics 55 (7): 635–642. PMID 12243453.
- ↑ Naganawa, Hiroshi; Hashizume, Hideki; Kubota, Yumiko; Sawa, Ryuichi; Takahashi, Yoshikazu; Arakawa, Kenji; Bowers, Simeon G.; Mahmud, Taifo (2002). "Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18". The Journal of Antibiotics 55 (6): 578–584. PMID 12195964.
- ↑ Sieber, Simon; Carlier, Aurélien; Neuburger, Markus; Grabenweger, Giselher; Eberl, Leo; Gademann, Karl (2015). "Isolation and Total Synthesis of Kirkamide, an Aminocyclitol from an Obligate Leaf Nodule Symbiont". Angewandte Chemie International Edition in English 54 (27): 7968–7970. doi:10.1002/anie.201502696.
- 1 2 Stratmann, Ansgar; Mahmud, Taifo; Lee, Sungsook; Distler, Juergen; Floss, Heinz G.; Piepersberg, Wolfgang (1999). "The AcbC Protein from Actinoplanes Species Is a C7-cyclitol Synthase Related to 3-Dehydroquinate Synthases and Is Involved in the Biosynthesis of the α-Glucosidase Inhibitor Acarbose". Journal of Biological Chemistry 274 (16): 10889–10896. doi:10.1074/jbc.274.16.10889.
- ↑ Yu, Yi; Bai, Linquan; Minagawa, Kazuyuki; Jian, Xiaohong; Li, Lei; Li, Jialiang; Chen, Shuangya; Cao, Erhu; Mahmud, Taifo (2005). "Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008". Applied and Environmental Microbiology 71 (9): 5066–5076. doi:10.1128/AEM.71.9.5066-5076.2005.
- ↑ Choi, Woo Sik; Wu, Xiumei; Choeng, Yong-Hoon; Mahmud, Taifo; Jeong, Byeong Chul; Lee, Sang Hee; Chang, Yong Keun; Kim, Chang-Joon; Hong, Soon-Kwang (2008). "Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838". Applied Microbiology and Biotechnology 80 (4): 637–645. doi:10.1007/s00253-008-1591-2.
- 1 2 Wu, Xiumei; Flatt, Patricia M.; Schlörke, Oliver; Zeeck, Axel; Dairi, Tohru; Mahmud, Taifo (2007). "A Comparative Analysis of the Sugar Phosphate Cyclase Superfamily Involved in Primary and Secondary Metabolism". ChemBioChem 8 (2): 239–248. doi:10.1002/cbic.200600446.
- ↑ Wu, Xiumei; Flatt, Patricia M.; Xu, Hui; Mahmud, Taifo (2009). "Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419". ChemBioChem 10 (2): 304–314. doi:10.1002/cbic.200800527.
- ↑ Flatt, Patricia M.; Wu, Xiumei; Perry, Steven; Mahmud, Taifo (2013). "Genetic Insights into Pyralomicin Biosynthesis in Nonomuraea spiralis IMC A-0156". Journal of Natural Products 76 (5): 939–946. doi:10.1021/np400159a.
- ↑ Asamizu, Shumpei; Xie, Pengfei; Brumsted, Corey J.; Flatt, Patricia M.; Mahmud, Taifo (2012). "Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products". Journal of the American Chemical Society 134 (29): 12219–12229. doi:10.1021/ja3041866.
- ↑ Kean, Kelsey M.; Codding, Sara J.; Asamizu, Shumpei; Mahmud, Taifo; Karplus, P. Andrew (2014). "Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus". Biochemistry 53 (26): 4250–4260. doi:10.1021/bi5003508.
- ↑ Zhang, Chang-Sheng; Stratmann, Ansgar; Block, Oliver; Brückner, Ralph; Podeschwa, Michael; Altenbach, Hans-Josef; Wehmeier, Udo F.; Piepersberg, Wolfgang (2002). "Biosynthesis of the C7-cyclitol Moiety of Acarbose inActinoplanes Species SE50/110 7-O-PHOSPHORYLATION OF THE INITIAL CYCLITOL PRECURSOR LEADS TO PROPOSAL OF A NEW BIOSYNTHETIC PATHWAY". Journal of Biological Chemistry 277 (25): 22853–22862. PMID 11937512.
- ↑ Minagawa, Kazuyuki; Zhang, Yirong; Ito, Takuya; Bai, Linquan; Deng, Zixin; Mahmud, Taifo (2007). "ValC, a New Type of C7-Cyclitol Kinase Involved in the Biosynthesis of the Antifungal Agent Validamycin A". ChemBioChem 8 (6): 632–641. doi:10.1002/cbic.200600528.
- ↑ Xu, Hui; Zhang, Yirong; Yang, Jongtae; Mahmud, Taifo; Bai, Linquan; Deng, Zixin (2009). "Alternative epimerization in C(7)N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily". Chemistry & Biology 16 (5): 567–576. doi:10.1016/j.chembiol.2009.04.006.
- ↑ Yang, Jongtae; Xu, Hui; Zhang, Yirong; Bai, Linquan; Deng, Zixin; Mahmud, Taifo (2011). "Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis". Organic & Biomolecular Chemistry 9 (2): 438–449. doi:10.1039/c0ob00475h.
- ↑ Asamizu, Shumpei; Yang, Jongtae; Almabruk, Khaled H.; Mahmud, Taifo (2011). "Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin a biosynthesis". Journal of the American Chemical Society 133 (31): 12124–12135. doi:10.1021/ja203574u.
- ↑ Cavalier, Michael C.; Yim, Young-Sun; Asamizu, Shumpei; Neau, David; Almabruk, Khaled H.; Mahmud, Taifo; Lee, Yong-Hwan (2012). "Mechanistic insights into validoxylamine A 7'-phosphate synthesis by VldE using the structure of the entire product complex". PLOS ONE 7 (9): e44934. doi:10.1371/journal.pone.0044934.
- ↑ Abuelizz, Hatem A.; Mahmud, Taifo (2015). "Distinct Substrate Specificity and Catalytic Activity of the Pseudoglycosyltransferase VldE". Chemistry & Biology 22 (6): 724–733. doi:10.1016/j.chembiol.2015.04.021.