Galvanostat

A galvanostat, (also known as amperostat) is a control and measuring device capable of keeping the current through an electrolytic cell in coulometric titrations constant, disregarding changes in the load itself.

Its main feature is its nearly "infinite" (i.e. extremely high in respect to common loads) internal resistance.

The designation "galvanostat" is mainly used in electrochemistry: this device differs from common constant current sources by its ability to supply and measure a wide range of currents (from picoamperes to amperes) of both polarities.

The galvanostat responds to changes in the resistance of the cell by varying its output potential: as Ohm's law shows,

{R} = {U \over I}

the variable system resistance and the controlled voltage are directly proportional, i.e.

 U_c ={R_v \times I_o}

where

thus, an increase of the load resistance implies an increase of the voltage the amperostat applies to the load.

Technical realization

The simpler galvanostat consists of a high-voltage source producing a constant voltage U with a resistor R_{x} connected in series: in order to force an almost constant current through a load, this resistor shall be much higher than the load resistor R_{load}. As a matter of fact, the current I through the load is given by

 I = \frac{U}{R_x + R_{load}}

and if R_x>>R_{load}, the current I is approximately determined by R_x as follows

I \cong \frac{U}{R_x}

This simple realization requires rather high voltages (~100 V) to keep the load current constant with sufficient approximation for all practical purposes. Therefore, more complex versions of galvanostats, using electronic amplifiers with feedback and lower voltages, have been developed and produced. These instruments are capable to feed constant currents in the ranges from few picoamperes (pA) to several amperes (A); typical construction for use in the lower range of feed currents uses operational amplifiers.

Example of application

Galvanostatic deposition techniques can be used for some thin film deposition applications where there is no need to control morphology of the thin film.

See also

External links

This article is issued from Wikipedia - version of the Thursday, January 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.