Androdioecy

Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison to the other major reproductive systems dioecy and hermaphroditism.[1] In animals, androdioecy has been considered an important stepping stone in the transition from dioecy to hermaphroditism, and vice versa.[2]

Evolution of androdioecy

The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist.[3][4] Particularly, males and hermaphrodites have to have the same fitness, in other words the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction.[5][6]

Androdioecy can evolve either from dioecious ancestors through the invasion of hermaphrodites or from hermaphroditic ancestors through the invasion of males. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.

Androdioecy with dioecious ancestry

In roundworms, clam, tadpole and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals.[7] In the well-studied roundworm Caenorhabditis elegans, males are very rare and only occur in populations that are in bad condition or stressed.[8]

Androdioecy with hermaphroditic ancestry

In plants, corals and barnacles, androdioecy has evolved from hermaphroditism. Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.

Androdioecious species

Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known.[2][9] These species include

Anthozoa (Corals)

Nematoda (Roundworms)

Rhabditidae (Order Rhabditida)

Diplogastridae (Order Rhabditida)

Steinernematidae (Order Rhabditida)

Allanotnematidae (Order Rhabditida)

Dorylaimida

Nemertea (Ribbon worms)

Arthropoda

Clam shrimp

Tadpole shrimp

Barnacles

Lysmata

Insects

Annelida (Ringed worms)

Chordata

Plants

External links

See also

References

  1. Pannell, JR. (2002). "The evolution and maintenance of androdioecy". Annual Review of Ecology and Systematics 33: 397–425. doi:10.1146/annurev.ecolsys.33.010802.150419.
  2. 1 2 Weeks, SC (2012). "The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia". Evolution 66 (12): 3670–3686. doi:10.1111/j.1558-5646.2012.01714.x.
  3. Charlesworth, D (1984). "Androdioecy and the evolution of dioecy". Biological Journal of the Linnean Society 22 (4): 333–348. doi:10.1111/j.1095-8312.1984.tb01683.x.
  4. Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton.
  5. Lloyd, DG (1975). "The maintenance of gynodioecy and androdioecy in angiosperms". Genetica 45: 325–339. doi:10.1007/bf01508307.
  6. Charlesworth, B; Charlesworth, D (1978). "A Model for the Evolution of Dioecy and Gynodioecy". The American Naturalist 112 (988): 975–997. doi:10.1086/283342.
  7. Pannell, J (2000). "A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation". Evolutionary Ecology 14 (3): 195–211. doi:10.1023/A:1011082827809.
  8. 1 2 Stewart, AD; Phillips, PC (2002). "Selection and maintenance of androdioecy in Caenorhabditis elegans". Genetics 160 (3): 975–982.
  9. Weeks, SC; Benvenuto, C; Reed, SK (2006). "When males and hermaphrodites coexist: a review of androdioecy in animals". Integrative and Comparative Biology 46 (4): 449–464. doi:10.1093/icb/icj048.
  10. Fürst von Lieven A (2008). "Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components". Nematology 10 (1): 27–45. doi:10.1163/156854108783360087.
  11. Kiontke K, Manegold A, Sudhaus W (2001). "Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera)". Nematology 3 (8): 817–832. doi:10.1163/156854101753625317.
  12. Ragsdale EJ, Kanzaki N, Sommer RJ (2014). "Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA". Nematology 16: 695–709. doi:10.1163/15685411-00002798.
  13. 1 2 Kanzaki N, Ragsdale EJ, Herrmann M, Susoy V, Sommer RJ (2013). "Two androdioecious and one dioecious new species of Pristionchus (Nematoda: Diplogastridae): new reference points for the evolution of reproductive mode". Journal of Nematology 45 (3): 172–194. PMC 3792836. PMID 24115783.
  14. Kanzaki N, Ragsdale EJ, Herrmann M, Sommer RJ (2012). "Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan". Journal of Nematology 44 (1): 80–91. PMC 3593256. PMID 23483847.
  15. Potts FA (1908). "Sexual phenomena in the free-living nematodes". Proceedings of the Cambridge Philosophical Society 14: 373–375.
  16. Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ (2013). "Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism". Zoological Journal of the Linnean Society 168: 671–698. doi:10.1111/zoj.12041.
  17. 1 2 Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ (2013). "Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development". Nematology 15: 1001–1020.
  18. Vicky G. Hollenbeck; Stephen C. Weeks; William R. Gould; Naida Zucker (2002). "Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: sexual encounter rates and outcrossing success". Behavioral Ecology 13 (4): 561–570. doi:10.1093/beheco/13.4.561.
  19. Zierold, T; Hanfling, B; Gómez, A (2007). "Recent evolution of alternative reproductive modes in the'living fossil'Triops cancriformis". BMC Evolutionary Biology 7 (1): 161. doi:10.1186/1471-2148-7-161.
  20. Crisp, DJ (1983). "Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male". Marine Biology Letters 4: 281–294.
  21. Zardus, JD; Hadfield, MG (2004). "Larval Development and Complemental Males in Chelonibia testudinaria, a Barnacle Commensal with Sea Turtles". Journal of Crustacean Biology 24 (3): 409–421. doi:10.1651/c-2476.
  22. Foster, BA (1983). "Complemental males in the barnacle Bathylasma alearum (cirripedia, pachylasmatidae)". Mem. Aus. Mus 18: 133–140. doi:10.3853/j.0067-1967.18.1984.379.
  23. 1 2 3 McLaughlin, PA; Henry, DP (1972). "Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica)". Crustaceana 22 (1): 13–30. doi:10.1163/156854072x00642.
  24. Henry, DP; McLaughlin, PA (1967). "A Revision of the Subgenus Solidobalanus Hoek (Cirripedia Thoracica) including a Description of a New Species with Complemental Males". Crustaceana 12 (1): 43–58. doi:10.1163/156854067x00693.
  25. Yusa, Y; Takemura, M; Miyazaki, K; Watanabe, T; Yamato, S (2010). "Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha". The Biological Bulletin 218 (3): 259–265.
  26. Mackiewicz; Tatarenkov, A; Taylor, DS; Turner, BJ; Avise, JC; et al. (2006). "Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite". Proc Natl Acad Sci USA 103 (26): 9924–9928. doi:10.1073/pnas.0603847103. PMC 1502555. PMID 16785430.
  27. Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
  28. Sakai, S (2001). "Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest". American Journal of Botany 88 (9): 1527–1534. doi:10.2307/3558396. PMID 21669685.
  29. Pannell J (1997). "Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae)". Biological Journal of the Linnean Society 61: 95–116. doi:10.1111/j.1095-8312.1997.tb01779.x.
  30. Valiente-Banuet, A; Rojas-Martínez, A; Del Coro, Arizmendi M; Dávila, P (1997). "Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico". American Journal of Botany 84 (4): 452. doi:10.2307/2446020.
  31. Thomson JD,Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059
  32. Muenchow, G (1998). "Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae)". American Journal of Botany 85 (4): 513. doi:10.2307/2446435.
  33. López-Almansa, JC; Pannell, JR; Gil, L (2003). "Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant". American Journal of Botany 90 (4): 603–609. doi:10.3732/ajb.90.4.603.
This article is issued from Wikipedia - version of the Monday, December 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.