M9 Armored Combat Earthmover

M9 ACE (Armored Combat Earthmover)

The M9 ACE during a bulldozing operation.
Place of origin  United States
Specifications
Weight 24.4 metric tons, or 36,001 lbs[1]
Length 6.25 m
Width 3.2 m
Height 2.7 m
Crew 1[2]

Armor Classified, resistant to shell splinters and small arms fire, NBC protection
Main
armament
Smoke dischargers
Secondary
armament
None
Engine Cummins V903C, 8 cylinder, diesel[1]
295 hp (220 kW)
Suspension Hydropneumatic
Operational
range
322 km or 200 miles
Speed 48 km/h or 30 mi/h[1]

The M9 (ACE) Armored Combat Earthmover is a highly mobile armored tracked vehicle that provides combat engineer support to front-line forces. Fielded by the United States Army, its tasks include eliminating enemy obstacles, maintenance and repair of roads and supply routes, and construction of fighting positions.

History

The M9 grew out of the Universal Engineer Tractor- "UET", a follow-on to 1958's All-purpose Ballastable Crawler (tractor) or "ABC".[3] By making a small tractor/scraper, it was possible to create a lightweight vehicle that could use local material as ballast. The weight was kept low enough to allow transportation in smaller cargo aircraft, to be air-droppable, and to allow the vehicle to float and swim. Initial development was between the Engineer Laboratory at Ft Belvoir, with International Harvester and Caterpillar. Successful in testing, and exciting a good deal of interest for civilian spin-off, the concept languished after a demonstration, where key decision-makers saw the vehicle sink in front of them while demonstrating its swimming ability.

The UET was originally seen as a squad vehicle, with provision for troop seats in the bowl, and was tested as a cargo vehicle, and even as a mobile mortar carrier.[4]

The M9 is a highly mobile, armored, amphibious tractor, dozer, and scraper. It was finally fielded in 1986, and is capable of supporting forces in both offensive and defensive operations. It performs critical combat engineer tasks such as digging hull defilade fighting positions for guns, tanks and other battlefield systems to increase their survivability. The ACE breaches berms, prepares anti-tank ditches, prepares combat roads, removes roadblocks and prepares access routes at water obstacles.

Two M9 ACEs staged ready to go out on a mission in Iraq.

The engine, drive train and driver's compartment are in the rear of the vehicle, while the front comprises an 8.7 cubic yard (6.7 m³) bowl, apron and dozer blade. Armor consists of welded aluminum with selected steel and aramid-laminated plates. An armored cupola containing eight vision blocks covers the driver's compartment. The vehicle hull is welded and bolted aluminum with a two speed winch capable of 25,000 pound (110 kN) line pull. Towing pintle and airbrake connections are provided. It is equipped with a suspension system which allows the front of the vehicle to be raised, lowered, or tilted to permit dozing, excavating, rough grading and ditching functions. The M9 is armored against small arms and artillery fragmentation, has smoke screening capability, and chemical-biological protection for the operator. Its roadspeed is 30 mph (50 km/h). It is transportable in C-130, C-141, and C-5 aircraft and can swim at 3 mph (5 km/h) under ideal conditions. Since the removal of swim missions as a task for the M9, the swim-related components are not required to be maintained.

By raising the dozer blade and using its scraper blade, the ACE can fill itself with ballast to improve dozing efficiency. Another key feature of the M9 is its hydropneumatic suspension system. The principal components are eight high-pressure hydraulic rotary actuators (four on each side) which connect to the roadwheel stations. During high-speed travel, this system assures a smooth ride through the use of shock-absorbing accumulators. In earthmoving operations, the operator rotates the actuators, thus lowering the apron and blade for digging.

A typical combat engineer battalion will contain 22 ACEs - seven per company plus an operational readiness float. The active Army has a total of 447 M9 ACEs.

SIP Phase 3 - Detailed Description of Projects

With its apron lifted this ACE uses its ejector to push earth out of its bowl in order to build up a heap.
An M9 at work in Kuwait before the war.

Hardened track pin with modified track shoe - Current track pins bend, causing NMCM time in two different ways. They deform the bushings, resulting in track maintenance, and they are difficult to remove when bent. Harder track pins will allow higher torque which will reduce bending moment. This will reduce frequency of track failures and make pin removal easier when track needs to be separated. In addition to the hardened pins, future buys of track will also have a larger pocket for the track pin nut. This will make it easier to get a socket on the nut even after the track edges get worn.

Hydraulic troubleshooting procedures - Reformat all hydraulic troubleshooting procedures to simplify fault isolation. The ACE has an extensive and complex hydraulic system. Insufficient hydraulic troubleshooting expertise is the single largest contributor to M9 NMCM downtime. It also contributes to NMCS time because good components are being removed and replacements ordered unnecessarily. Unit mechanics require detailed and complete troubleshooting procedures which are easy to use. Goal is to cut troubleshooting time and eliminate ambiguous or faulty troubleshooting paths. No hardware changes to the vehicles are included in this project.

Actuator mounting rings - Provide a stronger mounting system for the rotary actuators. Currently, actuator mounting bolts screw into steel inserts in the aluminum hull. The inserts pull out, resulting in loose actuators, hull damage, hydraulic line failures and damage to roadarms and actuators. Under this project, steel rings will be fastened inside the hull. The actuator bolts will pass through the existing mounting points and screw into the steel rings. The field modification installs rings at the front actuator station only; however, the rings can be installed at the three other stations as well if those hull inserts should come loose.

Bowl access plates - Provide easy access to the front actuators for troubleshooting and maintenance. Front actuators, accumulators and hydraulic lines require both scheduled and unscheduled maintenance. Currently, mechanics must perform troubleshooting and repairs from underneath the ACE, working in dark and cramped conditions. This increases maintenance time and leads to leaking hydraulic fittings. Access through the bowl floor will decrease maintenance time and eliminate most causes of actuator hydraulic leaks.

Hydraulic filtration improvements - Hydraulic cleanliness is critical on the ACE. To achieve the cleanest possible hydraulic system, a more efficient return line filter and a high pressure filter at the compensating pump output will be added. Three hydraulic tests points are being added at the high pressure filters. Also as part of this project, the two compensating pump suction hoses will be modified to prevent collapse and cavitation. Finally, the compensating pump adjustment will be improved by replacing the existing adjusting clamp with an adjusting screw and jam nut.

Hub and sprocket redesign - Current hub requires two unique sprockets. The outer one tends to bend and is difficult to fabricate, resulting in producibility delays and lengthy NMCS downtime. This project will eliminate the current outer sprocket and permit use of the inner sprocket in both positions. Goal is to eliminate shortages and higher cost of outer sprockets, and reduce maintenance burden. Also, the hub will be piloted onto the final drive output shaft, reducing the shear load and resultant failure of mounting bolts.

Semi-automatic track tensioner/adjuster - Currently, the operator checks and manually adjusts track tension using a grease gun before each mission. The new system will allow the operator to adjust track hydraulically from within the driver's compartment. With the manual system, the tension setting is a compromise, since the track needs sufficient slack to allow the suspension to go from sprung mode (travel) to unsprung mode (dozing). The semi-automatic track tensioner will relax the track to change between sprung and unsprung and then re-tension the track allowing a tighter envelope. This will reduce the number of track throws and associated damage and wear to suspension components and adjacent hull components.

Final drive improvements - Design an oil level indicator and modify the output shaft. Operators cannot assess the condition or lack of oil because there is no method to check oil level. This project will permit detection of water, contamination or loss of oil. Also, the output shaft will be modified to accommodate the redesigned sprocket hub.

Improved winch - With the current winch, the ACE has a limited ability to self-recover. This project will increase winch rating from 25,000 lbf to 35,000 lbf (110 to 155 kN), double cable length from 100 feet to 200 feet (30 to 60 m), and add a friction brake to enable the M9 to hold a load on a slope.

Steel dozer blade - Develop a steel replacement for the existing aluminum dozer blade. The current aluminum blade suffers damage when used in rocky terrain, is marginally suited for use with scarifier teeth, and generally wears down. Repair is difficult and involves time-consuming aluminum welding, resulting in extensive mission downtime. The complex hollow-box design also means that replacement blades are very expensive and have long leadtimes. A steel dozer blade will be less expensive, more resistant to wear and easier to repair if damaged. The new steel blades are fabricated in Pennsylvania.

Automatic blade folder - This project is now part of SIP 4 - Let the operator remotely fold or unfold dozer blade from the crew compartment. This procedure now takes up to 1/2 hour to perform, requires crew to be exposed and stops the ongoing mission. Failure to fold the blade during cross-country travel could result in vehicle damage or operator injury. This project is not a readiness enhancement, rather it offers a major performance improvement to the mission.

Employment

The M9 performs mobility, countermobility and survivability tasks in support of light or heavy forces. Tasks include the excavation and preparation/reduction of obstacles, bridging operations, battle positions, strong points, and protective emplacements for command posts, air defense, communications equipment and critical supply/logistical bunkers. Other major tasks will be route clearing and maintenance in both defensive and offensive operations.

In Operation Desert Storm the M9 Armored Combat Earthmover (ACE) performed exceptionally well in support of combat operations. The ACE proved to be a successful combination of armored vehicle and combat earthmover that was capable of keeping pace with the manoeuvre units, while providing crew survivability. While not as efficient as the D7 Dozer in earth moving, its ability to move with maneuver forces over several hundred kilometers of desert allowed it to successfully perform a wide variety of missions such as construction of combat roads and trails, survivability positions and berms. It can not, however, move as fast as an M1 or M2. The vehicle is governed to prevent this.

But the training of ACE operators appeared to be inadequate. Operators were unfamiliar with the techniques associated with dozing, scraping, cut and fill ops, and grading. The ACE experienced trouble in reducing the berms associated with Iraqi tank ditches (berm on enemy side). Due to the location of the driver in relation to the vehicle blade, he cannot see the blade or determine when he is about to tip over. The ACE needs a front mounted telescope or a side mounted periscope to overcome this deficiency. The ACE led the way in breaching the border berm between Saudi Arabia and Iraq, and in reducing trench-lines during the assault breach. In both instances the ACE performed extremely well. Problems were encountered, however, due to the ACE's shortcomings. One commander referred to the ACE operator as "Alone, Unarmed, and Unafraid". This highlights the ACE's major shortcomings as a piece of mobility equipment used during direct fire engagements. ACE operators, usually 19-year-old PFC's, led the 7th Corps breach into hostile country. Fortunately, they met with very light resistance. Otherwise, mortality among ACE operators would have been very high. The ACE is a single operator vehicle,[5] without the moral and physical advantages of a crew with an NCO in charge, and without the advantage of a weapon for local suppression. Habitually, maneuver task forces provided two Bradley Fighting Vehicles to protect the ACE during breaching ops. While this is a high price to pay for protection of one vehicle, commanders deemed it necessary for the success of their operations. Commanders felt that the ACE needs an additional crewman and a protective weapon such as a .50 caliber machine gun or the Mark 19 automatic grenade launcher.

Basis of issue

Training/personnel

TRADOC instructors and New Equipment Training Teams (NETT) will be trained by the contractor. Initial training will be by NETT for Combat Engineer organizations issued the M9. Institutional training at U.S. Army Engineer Center at Fort Leonard Wood will provide training for the operator (MOS 12F) and maintainer (MOS 62B). Operator proficiency will be maintained by Training Extension Course tapes and extension training materials.

References

  1. 1 2 3 M9 ACE military-today.com
  2. The Whirlwind War Schubert et al.
  3. Jane's Defense (1986). Jane's Defense Weekly 5: 269. Missing or empty |title= (help);
  4. ["universal Engineer Tractor" "Do-everything tractor can be dropped from sky"] Check |url= value (help). Popular Science 181 (4): 110–111. Oct 1962. Retrieved 3 December 2015.
  5. M9 Armored Combat Earthmover

External links

This article is issued from Wikipedia - version of the Wednesday, March 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.