Arrowhead matrix

In the mathematical field of linear algebra, an arrowhead matrix is a square matrix containing zeros in all entries except for the first row, first column, and main diagonal.[1][2] In other words, the matrix has the form


A=\begin{bmatrix}
\,\! *&*&*&*&* \\
\,\! *&*&0&0&0 \\
\,\! *&0&*&0&0 \\
\,\! *&0&0&*&0 \\
\,\! *&0&0&0&*
\end{bmatrix}.

Any symmetric permutation of the arrowhead matrix, P^T A P, where P is a permutation matrix, is a (permuted) arrowhead matrix. Real symmetric arrowhead matrices are used in some algorithms for finding of eigenvalues and eigenvectors.[3]

Real symmetric arrowhead matrices

Let A be a real symmetric (permuted) arrowhead matrix of the form


A=\left[
\begin{array}{cc}
D & z \\
z^{T} & \alpha
\end{array}
\right],

where D=\mathop{\mathrm{diag}}(d_{1},d_{2},\ldots ,d_{n-1}) is diagonal matrix of order n-1,

z=\begin{bmatrix}
\zeta _{1} & \zeta _{2} & \cdots & \zeta _{n-1}
\end{bmatrix}^T is a vector and \alpha is a scalar. Let


A=V\Lambda V^{T}

be the eigenvalue decomposition of A, where \Lambda =\mathop{\mathrm{diag}}(\lambda_1,\lambda_2,\ldots ,\lambda_n)

is a diagonal matrix whose diagonal elements are the eigenvalues of A, and V=\begin{bmatrix}v_{1} & \cdots & v_{n} \end{bmatrix}

is an orthonormal matrix whose columns are the corresponding eigenvectors. The following holds:

Eigenvalues and eigenvectors

Symmetric arrowhead matrix is irreducible if \zeta_i\neq 0 for all i and d_{i}\neq d_{j} for all i\neq j. The eigenvalues of an irreducible real symmetric arrowhead matrix are the zeros of the secular equation


f(\lambda )=\alpha -\lambda -\sum_{i=1}^{n-1}\frac{\zeta _{i}^{2}}{
d_{i}-\lambda }\equiv \alpha -\lambda -z^{T}(D-\lambda I)^{-1}z=0

which can be, for example, computed by the bisection method. The corresponding eigenvectors are equal to


v_{i}=\frac{x_{i}}{\| x_{i}\| _{2}}, \quad x_{i}=
\begin{bmatrix}
\left( D-\lambda _{i}I\right)^{-1}z \\
-1
\end{bmatrix}, \quad i=1,\ldots ,n.

Direct application of the above formula may yield eigenvectors which are not numerically sufficiently orthogonal.[1] The forward stable algorithm which computes each eigenvalue and each component of the corresponding eigenvector to almost full accuracy is described in.[2] The Julia version of the software is available.[4]

Inverses

Let A be an irreducible real symmetric arrowhead matrix. If d_i=0 for some i, the inverse is a permuted irreducible real symmetric arrowhead matrix:


A^{-1}=\begin{bmatrix}
D_{1}^{-1} & w_{1} & 0 & 0 \\
w_{1}^{T} & b & w_{2}^{T} & 1/\zeta _{i} \\
0 & w_{2} & D_{2}^{-1} & 0 \\
0 & 1/\zeta _{i} & 0 & 0
\end{bmatrix}

where


\begin{alignat}{2}
D_1& =\mathop{\mathrm{diag}}(d_{1},d_{2},\ldots ,d_{i-1}), \\  
D_2&=\mathop{\mathrm{diag}}(d_{i+1},d_{i+2},\ldots ,d_{n-1}),\\
z_1&=\begin{bmatrix} \zeta _{1} & \zeta _{2} & \cdots & \zeta _{i-1}\end{bmatrix}^T, \\ 
z_2&=\begin{bmatrix} \zeta _{i+1} & \zeta _{i+2} & \cdots & \zeta _{n-1}\end{bmatrix}^T,\\
w_{1}&=-D_{1}^{-1}z_{1}\frac{1}{\zeta _{i}},\\
w_{2}&=-D_{2}^{-1}z_{2}\frac{1}{\zeta _{i}},\\
b&=\frac{1}{\zeta _{i}^{2}}\left(
-a+z_{1}^{T}D_{1}^{-1}z_{1}+z_{2}^{T}D_{2}^{-1}z_{2}\right).
\end{alignat}


If d_i\neq 0 for all i, the inverse is a rank-one modification of a diagonal matrix (diagonal-plus-rank-one matrix or DPR1):


A^{-1}=\begin{bmatrix} D^{-1} &  \\ & 0\end{bmatrix}+\rho uu^{T},

where


u=\begin{bmatrix} D^{-1} z \\ -1\end{bmatrix},\quad \rho =\frac{1}{\alpha-z^{T}D^{-1}z}.

References

  1. 1 2 O'Leary, D. P.; Stewart, G. W. (1990). "Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices". Journal of Computational Physics 90: 497–505. doi:10.1016/0021-9991(90)90177-3.
  2. 1 2 Jakovcevic Stor, Nevena; Slapnicar, Ivan; Barlow, Jesse L. (2015). "Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications". Linear Algebra and Its Applications 464: 62–89. arXiv:1302.7203. doi:10.1016/j.laa.2013.10.007.
  3. Gu, Ming; Eisenstat, Stanley C. (1995). "A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem". SIAM Journal on Matrix Analysis and Applications 16: 172. doi:10.1137/S0895479892241287.
  4. "Arrowhead.jl"
This article is issued from Wikipedia - version of the Tuesday, February 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.