Valuation (logic)

In logic and model theory, a valuation can be:

Mathematical logic

In mathematical logic (especially model theory), a valuation is an assignment of truth values to formal sentences that follows a truth schema. Valuations are also called truth assignments.

In propositional logic, there are no quantifiers, and formulas are built from propositional variables using logical connectives. In this context, a valuation begins with an assignment of a truth value to each propositional variable. This assignment can be uniquely extended to an assignment of truth values to all propositional formulas.

In first-order logic, a language consists of a collection of constant symbols, a collection of function symbols, and a collection of relation symbols. Formulas are built out of atomic formulas using logical connectives and quantifiers. A structure consists of a set (domain of discourse) that determines the range of the quantifiers, along with interpretations of the constant, function, and relation symbols in the language. Corresponding to each structure is a unique truth assignment for all sentences (formulas with no free variables) in the language.

Notation

If v is a valuation, that is, a mapping from the atoms to the set \{ t, f \}, then the double-bracket notation is commonly used to denote a valuation; that is, v(\phi)=[[\phi]]_v for a proposition \phi.[1]

See also

References

  1. Dirk van Dalen, (2004) Logic and Structure, Springer Universitext, (see section 1.2) ISBN 978-3-540-20879-2
This article is issued from Wikipedia - version of the Wednesday, February 24, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.