Bagger–Lambert–Gustavsson action

In physics, in the context of M-theory, the action for the N=8 M2 branes in full is (with some indices hidden):


S = \int{ \left( -\frac{1}{2} D^\mu X_I D_\mu X_I +\frac{i}{2} \overline{\Psi} \Gamma^\mu D_\mu \Psi +\frac{i}{4} \overline{\Psi} \Gamma_{IJ} \left[ X^I, X^J, \Psi \right] - \frac{1}{12} \left[ X^I, X^J, X^K \right] \left[ X^I, X^J, X^K \right] + \frac{1}{2}\varepsilon^{abc}Tr(A_a\partial_b A_c + \frac{2}{3}A_a A_b A_c)\right) }d\sigma^3

where [, ] is a generalisation of a Lie bracket which gives the group constants.

The only known compatible solution however is:


\left[A,B,C\right]_\eta \equiv \varepsilon^{\mu\nu\tau\eta}A_\mu B_\nu C_\tau

using the Levi-Civita symbol which is invariant under SO(4) rotations. M5 branes can be introduced by using an infinite symmetry group.

The action is named after Jonathan Bagger, Neil Lambert, and Andreas Gustavsson.[1][2]

Notes

  1. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108]
  2. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260]

References


This article is issued from Wikipedia - version of the Saturday, May 03, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.