Bang–bang control

A water heater that maintains desired temperature by turning the applied power on and off (as opposed to continuously varying electrical voltage or current) based on temperature feedback is an example application of bang–bang control. Although the applied power switches from one discrete state to another, the water temperature will remain relatively constant due to the slow nature of temperature changes in materials. Hence, the regulated temperature is like a sliding mode of the variable structure system setup by the bang–bang controller.

In control theory, a bang–bang controller (on–off controller), also known as a hysteresis controller, is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either completely on or completely off. Most common residential thermostats are bang–bang controllers. The Heaviside step function in its discrete form is an example of a bang–bang control signal. Due to the discontinuous control signal, systems that include bang–bang controllers are variable structure systems, and bang–bang controllers are thus variable structure controllers.

Bang–bang solutions in optimal control

In optimal control problems, it is sometimes the case that a control is restricted to be between a lower and an upper bound. If the optimal control switches from one extreme to the other (i.e., is strictly never in between the bounds), then that control is referred to as a bang-bang solution.

Bang–bang controls frequently arise in minimum-time problems. For example, if it is desired to stop a car in the shortest possible time at a certain position sufficiently far ahead of the car, the solution is to apply maximum acceleration until the unique switching point, and then apply maximum braking to come to rest exactly at the desired position.

A familiar everyday example is bringing water to a boil in the shortest time, which is achieved by applying full heat, then turning it off when the water reaches a boil. A closed-loop household example is most thermostats, wherein the heating element or air conditioning compressor is either running or not, depending upon whether the measured temperature is above or below the setpoint.

Bang–bang solutions also arise when the Hamiltonian is linear in the control variable; application of Pontryagin's minimum or maximum principle will then lead to pushing the control to its upper or lower bound depending on the sign of the coefficient of u in the Hamiltonian.

In summary, bang–bang controls are actually optimal controls in some cases, although they are also often implemented because of simplicity or convenience.

See also

References

This article is issued from Wikipedia - version of the Tuesday, March 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.