Baxter permutation

In combinatorial mathematics, a Baxter permutation is a permutation \sigma \in S_n which satisfies the following generalized pattern avoidance property:

For example, the permutation σ = 2413 in S4 (written in one-line notation) is not a Baxter permutation because, taking i = 1, j = 2 and k = 4, this permutation violates the first condition.

These permutations were introduced by Glen E. Baxter in the context of mathematical analysis.

Enumeration

For n = 1, 2, 3, ..., the number an of Baxter permutations of length n is

1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, 414499438, 2593341586, 16458756586,...

This is sequence A001181 in the OEIS. In general, an has the following formula:


a_n \, = \,\sum_{k=1}^n \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}}
.[1]

In fact, this formula is graded by the number of descents in the permutations, i.e., there are \frac{\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}}{\binom{n+1}{1}\binom{n+1}{2}} Baxter permutations in Sn with k-1 descents.

Other properties

See also

References

  1. Chung, F. R. K.; Graham, R. L.; Hoggatt, V. E., Jr.; Kleiman, M. (1978), "The number of Baxter permutations" (PDF), Journal of Combinatorial Theory, Series A 24 (3): 382–394, doi:10.1016/0097-3165(78)90068-7, MR 491652.
  2. Dulucq, S.; Guibert, O. (1998), "Baxter permutations", Discrete Mathematics 180 (1-3): 143–156, doi:10.1016/S0012-365X(97)00112-X, MR 1603713.
  3. Guibert, Olivier; Linusson, Svante (2000), "Doubly alternating Baxter permutations are Catalan", Discrete Mathematics 217 (1-3): 157–166, doi:10.1016/S0012-365X(99)00261-7, MR 1766265.
  4. Giraudo, Samuele (2011), "Algebraic and combinatorial structures on Baxter permutations", 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), Discrete Math. Theor. Comput. Sci. Proc. AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, pp. 387–398, arXiv:1011.4288, MR 2820726.
  5. Bonichon, Nicolas; Bousquet-Mélou, Mireille; Fusy, Éric (October 2009), "Baxter permutations and plane bipolar orientations", Séminaire Lotharingien de Combinatoire 61A, Art. B61Ah, 29pp, arXiv:0805.4180, MR 2734180.
  6. Korn, M. (2004), Geometric and algebraic properties of polyomino tilings, Ph.D. thesis, Massachusetts Institute of Technology.
  7. Ackerman, Eyal; Barequet, Gill; Pinter, Ron Y. (2006), "A bijection between permutations and floorplans, and its applications", Discrete Applied Mathematics 154 (12): 1674–1684, doi:10.1016/j.dam.2006.03.018, MR 2233287.

External links

This article is issued from Wikipedia - version of the Wednesday, March 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.