Be/X-ray binary

Be/X-ray binaries (BeXRBs) are a class of high-mass X-ray binaries that consist of a Be star and a neutron star. The neutron star is usually in a wide highly elliptical orbit around the Be star. The Be stellar wind forms a disk confined to a plane often different from the orbital plane of the neutron star. When the neutron star passes through the Be disk, it accretes a large mass of gas in a short time. As the gas falls onto the neutron star, a bright flare in hard X-rays is seen.

LSI+61°303

LSI+61°303 is an example of a Be/x-ray binary star. It is a periodic, radio-emitting binary system that is also the gamma-ray source, CG135+01.[1] Using the ROSAT and VLA observatories, an X-ray outburst with an ~10 d duration was detected.[1] LSI+61°303 is a variable radio source characterized by periodic, non-thermal radio outbursts with a period of 26.496 d.[1] The 26.5 d period has been attributed to the eccentric orbital motion of a compact object, probably a neutron star, around a rapidly rotating B0 Ve star, with a Teff ~26,000 K and luminosity of 1031 watts (1038 erg s−1).[1] Photometric observations at optical and infrared wavelengths also show a 26.5 d modulation.[1]

Of the 20 or so members of the Be/X-ray binary systems, as of 1996, only X Per and LSI+61°303 have X-ray outbursts of much higher luminosity and harder spectrum (kT ≈ 10–20 keV) vs. (kT ≤ 1 keV); however, LSI+61°303 further distinguishes itself by its strong, outbursting radio emission.[1] "The radio properties of LSI+61°303 are similar to those of the "standard" high-mass X-ray binaries such as SS 433, Cyg X-3 and Cir X-1."[1]

References

  1. 1 2 3 4 5 6 7 Taylor AR, Young G, Peracaula M, Kenny HT, Gregory PC (1996). "An X-ray outburst from the radio emitting X-ray binary LSI+61°303". Astron Astrophys. 305: 817–24. Bibcode:1996A&A...305..817T.
This article is issued from Wikipedia - version of the Friday, April 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.