Bellard's formula

Bellard's formula, as used by PiHex, the now-completed distributed computing project, is used to calculate the nth digit of π in base 2. It is a faster version (about 43% faster[1]) of the Bailey–Borwein–Plouffe formula.

Bellard's formula was discovered by Fabrice Bellard in 1997.

Formula


\begin{align}
\pi = \frac1{2^6} \sum_{n=0}^\infty \frac{(-1)^n}{2^{10n}} \, \left(-\frac{2^5}{4n+1} \right. & {} - \frac1{4n+3} + \frac{2^8}{10n+1} - \frac{2^6}{10n+3} \left. {} - \frac{2^2}{10n+5} - \frac{2^2}{10n+7} + \frac1{10n+9} \right)
\end{align}

Notes

  1. PiHex Credits

External links

This article is issued from Wikipedia - version of the Thursday, December 18, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.