Bernstein–Zelevinsky classification
In mathematics, the Bernstein–Zelevinsky classification, introduced by Bernstein and Zelevinsky (1977) and Zelevinsky (1980), classifies the irreducible complex smooth representations of a general linear group over a local field in terms of cuspidal representations.
References
- Bernstein, J. (1992), Representations of p-adic groups (PDF), Lectures by Joseph Bernstein. Written by Karl E. Rumelhart, Harvard University
- Bernšteĭn, I. N.; Zelevinskiĭ, A. V. (1976), "Representations of the group GL(n,F), where F is a local non-Archimedean field" (PDF), Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, Translation in Russian mathematical Surveys 31 (3): 5–70, ISSN 0042-1316, MR 0425030
- Bernstein, I. N.; Zelevinsky, A. V. (1977), "Induced representations of reductive p-adic groups. I", Annales Scientifiques de l'École Normale Supérieure. Quatrième Série 10 (4): 441–472, ISSN 0012-9593, MR 0579172
- Zelevinsky, A. V. (1980), "Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)", Annales Scientifiques de l'École Normale Supérieure. Quatrième Série 13 (2): 165–210, ISSN 0012-9593, MR 584084
This article is issued from Wikipedia - version of the Wednesday, August 28, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.