Besov space
In mathematics, the Besov space (named after Oleg Vladimirovich Besov) is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. It, as well as the similarly defined Triebel–Lizorkin space, serve to generalize more elementary function spaces and are effective at measuring regularity properties of functions.
Definition
Several equivalent definitions exist. One of them is described below.
Let
and define the modulus of continuity by
Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space contains all functions f such that (see Sobolev space)
Norm
The Besov space is equipped with the norm
The Besov spaces coincide with the more classical Sobolev spaces .
If and is not an integer, then , where denotes the Sobolev–Slobodeckij space.
References
- Triebel, H. "Theory of Function Spaces II".
- Besov, O. V. "On a certain family of functional spaces. Embedding and extension theorems", Dokl. Akad. Nauk SSSR 126 (1959), 1163–1165.
- DeVore, R. and Lorentz, G. "Constructive Approximation", 1993.
- DeVore, R., Kyriazis, G. and Wang, P. "Multiscale characterizations of Besov spaces on bounded domains", Journal of Approximation Theory 93, 273-292 (1998).