Beta-dual space

In functional analysis and related areas of mathematics, the beta-dual or β-dual is a certain linear subspace of the algebraic dual of a sequence space.

Definition

Given a sequence space X the β-dual of X is defined as

X^{\beta}:= \left \{ x \in X \ : \ \sum_{i=1}^{\infty} x_i y_i < \infty \quad \forall y \in X \right \}.

If X is an FK-space then each y in Xβ defines a continuous linear form on X

f_y(x) := \sum_{i=1}^{\infty} x_i y_i \qquad x \in X.

Examples

Properties

The beta-dual of an FK-space E is a linear subspace of the continuous dual of E. If E is an FK-AK space then the beta dual is linear isomorphic to the continuous dual.

This article is issued from Wikipedia - version of the Wednesday, March 12, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.