Single-precision floating-point format

Single-precision floating-point format is a computer number format that occupies 4 bytes (32 bits) in computer memory and represents a wide dynamic range of values by using a floating point.

In IEEE 754-2008 the 32-bit base 2 format is officially referred to as binary32. It was called single in IEEE 754-1985. In older computers, different floating-point formats of 4 bytes were used, e.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.

One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and properties of the double float data type depended on the computer manufacturer and computer model.

Single-precision binary floating-point is used due to its wider range over fixed point (of the same bit-width), even if at the cost of precision. A signed 32-bit integer can have a maximum value of 231 − 1 = 2,147,483,647, whereas the maximum representable IEEE 754 floating point value is (1 − 2−24) × 2128 ≈ 3.402823 × 1038. All integers with six or fewer significant decimal digits can be converted to an IEEE 754 floating point value without loss of precision, some integers up to nine significant decimal digits can be converted to an IEEE 754 floating point value without loss of precision, but no more than nine significant decimal digits can be stored. As an example, the 32-bit integer 2,147,483,647 converts to 2,147,483,650 in IEEE 754 form.

Single precision is termed REAL in Fortran,[1] as float in C, C++, C#, Java,[2] as Float in Haskell,[3] and as Single in Object Pascal (Delphi), Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers. In most implementations of PostScript, the only real precision is single.

IEEE 754 single-precision binary floating-point format: binary32

The IEEE 754 standard specifies a binary32 as having:

This gives from 6 to 9 significant decimal digits precision (if a decimal string with at most 6 significant decimal digits is converted to IEEE 754 single precision and then converted back to the same number of significant decimal digits, then the final string should match the original; and if an IEEE 754 single precision is converted to a decimal string with at least 9 significant decimal digits and then converted back to single, then the final number must match the original[4]).

Sign bit determines the sign of the number, which is the sign of the significand as well. Exponent is either an 8 bit signed integer from −128 to 127 (2's complement) or an 8 bit unsigned integer from 0 to 255 which is the accepted biased form in IEEE 754 binary32 definition. If the unsigned integer format is used, the exponent value used in the arithmetic is the exponent shifted by a bias – for the IEEE 754 binary32 case, an exponent value of 127 represents the actual zero (i.e. for 2e − 127 to be one, e must be 127).

The true significand includes 23 fraction bits to the right of the binary point and an implicit leading bit (to the left of the binary point) with value 1 unless the exponent is stored with all zeros. Thus only 23 fraction bits of the significand appear in the memory format but the total precision is 24 bits (equivalent to log10(224) ≈ 7.225 decimal digits). The bits are laid out as follows:


The real value assumed by a given 32 bit binary32 data with a given biased sign, exponent e (the 8 bit unsigned integer), and a 23 bit fraction is (-1)^{b_{31}}\times (1.b_{22}b_{21}...b_{0})_2 \times 2^{b_{30}b_{29}...b_{23}-127} which in decimal yields \text{value} = (-1)^\text{sign}\times \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i} \right)\times 2^{(e-127)}.

In this example:

thus:

Note

Exponent encoding

The single-precision binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 127; also known as exponent bias in the IEEE 754 standard.

Thus, in order to get the true exponent as defined by the offset-binary representation, the offset of 127 has to be subtracted from the stored exponent.

The stored exponents 00H and FFH are interpreted specially.

Exponent Significand zero Significand non-zero Equation
00H zero, −0 denormal numbers (−1)signbit×2−126× 0.significandbits
01H, ..., FEH normalized value (−1)signbit×2exponentbits−127× 1.significandbits
FFH ±infinity NaN (quiet, signalling)

The minimum positive normal value is 2−126 ≈ 1.18 × 10−38 and the minimum positive (denormal) value is 2−149 ≈ 1.4 × 10−45.

Converting from decimal representation to binary32 format

In general, refer to the IEEE 754 standard itself for the strict conversion (including the rounding behaviour) of a real number into its equivalent binary32 format.

Here we can show how to convert a base 10 real number into an IEEE 754 binary32 format using the following outline:

Conversion of the fractional part: consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and re-multiply new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

0.375 x 2 = 0.750 = 0 + 0.750 => b−1 = 0, the integer part represents the binary fraction digit. Re-multiply 0.750 by 2 to proceed

0.750 x 2 = 1.500 = 1 + 0.500 => b−2 = 1

0.500 x 2 = 1.000 = 1 + 0.000 => b−3 = 1, fraction = 0.000, terminate

We see that (0.375)10 can be exactly represented in binary as (0.011)2. Not all decimal fractions can be represented in a finite digit binary fraction. For example, decimal 0.1 cannot be represented in binary exactly. So it is only approximated.

Therefore, (12.375)10 = (12)10 + (0.375)10 = (1100)2 + (0.011)2 = (1100.011)2

Also IEEE 754 binary32 format requires that you represent real values in (1.x_1x_2...x_{23})_2 \times 2^{e} format, (see Normalized number, Denormalized number) so that 1100.011 is shifted to the right by 3 digits to become (1.100011)_2 \times 2^{3}

Finally we can see that: (12.375)_{10} =(1.100011)_2 \times 2^{3}

From which we deduce:

From these we can form the resulting 32 bit IEEE 754 binary32 format representation of 12.375 as: 0-10000010-10001100000000000000000 = 41460000H

Note: consider converting 68.123 into IEEE 754 binary32 format: Using the above procedure you expect to get 42883EF9H with the last 4 bits being 1001. However, due to the default rounding behaviour of IEEE 754 format, what you get is 42883EFAH, whose last 4 bits are 1010.

Ex 1: Consider decimal 1. We can see that: (1)_{10} =(1.0)_2 \times 2^{0}

From which we deduce:

From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 1 as: 0-01111111-00000000000000000000000 = 3f800000H

Ex 2: Consider a value 0.25. We can see that: (0.25)_{10} =(1.0)_2 \times 2^{-2}

From which we deduce:

From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 0.25 as: 0-01111101-00000000000000000000000 = 3e800000H

Ex 3: Consider a value of 0.375. We saw that 0.375 = {(1.1)_2}\times 2^{-2}

Hence after determining a representation of 0.375 as {(1.1)_2}\times 2^{-2} we can proceed as above:

From these we can form the resulting 32 bit IEEE 754 binary32 format representation of real number 0.375 as: 0-01111101-10000000000000000000000 = 3ec00000H

Single-precision examples

These examples are given in bit representation, in hexadecimal, of the floating-point value. This includes the sign, (biased) exponent, and significand.

3f80 0000  = 1
c000 0000  = −2
7f7f ffff  = (1 − 2−24) × 2128  ≈ 3.402823466 × 1038  (max finite positive value in single precision)
0080 0000  = 2-126 ≈ 1.175494351 × 10−38 (min normalized positive value in single precision)
0000 0000  = 0
8000 0000  = −0
7f80 0000  = infinity
ff80 0000  = −infinity
3eaa aaab  ≈ 1/3

By default, 1/3 rounds up, instead of down like double precision, because of the even number of bits in the significand. The bits of 1/3 beyond the rounding point are 1010... which is more than 1/2 of a unit in the last place.

Converting from single-precision binary to decimal

We start with the hexadecimal representation of the value, 41c80000, in this example, and convert it to binary:

41c8 000016 = 0100 0001 1100 1000 0000 0000 0000 00002

then we break it down into three parts: sign bit, exponent, and significand.

We then add the implicit 24th bit to the significand:

and decode the exponent value by subtracting 127:

Each of the 24 bits of the significand (including the implicit 24th bit), bit 23 to bit 0, represents a value, starting at 1 and halves for each bit, as follows:

bit 23 = 1
bit 22 = 0.5
bit 21 = 0.25
bit 20 = 0.125
bit 19 = 0.0625
.
.
bit 0 = 0.00000011920928955078125

The significand in this example has three bits set: bit 23, bit 22, and bit 19. We can now decode the significand by adding the values represented by these bits.

Then we need to multiply with the base, 2, to the power of the exponent, to get the final result:

1.5625 × 24 = 25

Thus

41c8 0000 = 25

This is equivalent to:

n = (-1)^s \times
           (1+m*2^{-23})\times
           2^{x - 127}

where s is the sign bit, x is the exponent, and m is the significand.

Precision limits on integer values

Trivia

A fascinating example of how the floating-point format can be misused in a good way is shown in the fast inverse square root implementation, where the complex calculation of square root and inversion are replaced (approximately) by a bit-shift and subtraction operated on the 32-bits of the floating point encoding as if it were an integer.

See also

References

External links

This article is issued from Wikipedia - version of the Saturday, April 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.