Bisymmetric matrix
In mathematics, a bisymmetric matrix is a square matrix that is symmetric about both of its main diagonals. More precisely, an n × n matrix A is bisymmetric if it satisfies both A = AT and AJ = JA where J is the n × n exchange matrix.
For example:
Properties
Bisymmetric matrices are both symmetric centrosymmetric and symmetric persymmetric. It has been shown that real-valued bisymmetric matrices are precisely those symmetric matrices whose eigenvalues are the same up to sign after pre or post multiplication by the exchange matrix.[1]
The product of two bisymmetric matrices results in a centrosymmetric matrix
References
- ↑ Tao, D.; Yasuda, M. (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM J. Matrix Anal. Appl. 23 (3): 885–895. doi:10.1137/S0895479801386730. Retrieved 2007-10-12.
This article is issued from Wikipedia - version of the Tuesday, August 18, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.