Blum Blum Shub
Blum Blum Shub (B.B.S.) is a pseudorandom number generator proposed in 1986 by Lenore Blum, Manuel Blum and Michael Shub [1] that is derived from Michael O. Rabin's oblivious transfer mapping.
Blum Blum Shub takes the form
- ,
where M = pq is the product of two large primes p and q. At each step of the algorithm, some output is derived from xn+1; the output is commonly either the bit parity of xn+1 or one or more of the least significant bits of xn+1.
The seed x0 should be an integer that is co-prime to M (i.e. p and q are not factors of x0) and not 1 or 0.
The two primes, p and q, should both be congruent to 3 (mod 4) (this guarantees that each quadratic residue has one square root which is also a quadratic residue) and gcd(φ(p − 1), φ(q − 1)) should be small (this makes the cycle length large).
An interesting characteristic of the Blum Blum Shub generator is the possibility to calculate any xi value directly (via Euler's Theorem):
- ,
where is the Carmichael function. (Here we have ).
Security
There is a proof reducing its security to the computational difficulty of solving the Quadratic residuosity problem.[1] When the primes are chosen appropriately, and O(log log M) lower-order bits of each xn are output, then in the limit as M grows large, distinguishing the output bits from random should be at least as difficult as solving the Quadratic residuosity problem modulo M.
Example
Let , and (where is the seed). We can expect to get a large cycle length for those small numbers, because . The generator starts to evaluate by using and creates the sequence , , , = 9, 81, 82, 36, 42, 92. The following table shows the output (in bits) for the different bit selection methods used to determine the output.
Even parity bit | Odd parity bit | Least significant bit |
---|---|---|
0 1 1 0 1 0 | 1 0 0 1 0 1 | 1 1 0 0 0 0 |
References
- 1 2 Blum, Lenore; Blum, Manuel; Shub, Mike (1 May 1986). "A Simple Unpredictable Pseudo-Random Number Generator". SIAM Journal on Computing 15 (2): 364–383. doi:10.1137/0215025.
- General
- Blum, Lenore; Blum, Manuel; Shub, Mike (1982). "Comparison of Two Pseudo-Random Number Generators". Advances in Cryptology: Proceedings of CRYPTO '82. Plenum: 61–78.
- Geisler, Martin; Krøigård, Mikkel; Danielsen, Andreas (December 2004). "About Random Bits". available as PDF and Gzipped Postscript
External links
- GMPBBS , a GPL'ed GMP-based implementation of Blum Blum Shub in C by Maria Morisot with implementation in Java also.
- An implementation in Java
- Randomness tests