Bondage number
In mathematics, the bondage number of a nonempty graph is the cardinality of the smallest set of edges E such that the domination number of the graph with the edges E removed is greater than the domination number of the original graph.[1][2] The concept was introduced by Fink et. al.[3]
References
- ↑ Fink, John Frederick (1990). "The bondage number of a graph". Discrete Mathematics 86 (1-3): 47–57. doi:10.1016/0012-365X(90)90348-L.
- ↑ Hartnell, Bert L. (1994). "Bounds on the bondage number of a graph". Discrete Mathematics 128 (1-3): 173–177. doi:10.1016/0012-365X(94)90111-2.
- ↑ Xu, J. M. (2013). "On Bondage Numbers of Graphs: A Survey with Some Comments". International Journal of Combinatorics 2013 (1): 1. doi:10.1155/2013/595210.
This article is issued from Wikipedia - version of the Sunday, January 31, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.