Bonse's inequality

In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pn, pn+1 are the smallest n + 1 prime numbers and n  4, then

 p_1 \cdots  p_n > p_{n+1}^2. \,

Notes

  1. Bonse, H. (1907). "Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung". Archiv der Mathematik und Physik 3 (12): 292295.

References


This article is issued from Wikipedia - version of the Saturday, May 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.