Boyer–Lindquist coordinates

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

The coordinate transformation from Boyer–Lindquist coordinates r, \theta, \phi to cartesian coordinates x, y, z is given by

{x} = \sqrt {r^2 + a^2} \sin\theta\cos\phi
{y} = \sqrt {r^2 + a^2} \sin\theta\sin\phi
{z} = r \cos\theta \quad

The line element for a black hole with mass M, angular momentum J, and charge Q in Boyer–Lindquist coordinates and natural units (G=c=1) is

 ds^2 = -\frac{\Delta}{\Sigma}\left(dt - a \sin^2\theta d\phi \right)^2 +\frac{\sin^2\theta}{\Sigma}\Big((r^2+a^2)d\phi - a dt\Big)^2 + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2

where

 \Delta = r^2 - 2Mr + a^2 + Q^2
 \Sigma = r^2 + a^2 \cos^2\theta
 a = J/M , the angular momentum per unit mass of the black hole

Note that in natural units M, a, and Q all have units of length. This line element describes the Kerr–Newman metric.

The Hamiltonian for test particle motion in Kerr spacetime was separable in Boyer–Lindquist coordinates. Using Hamilton-Jacobi theory one can derive a fourth constant of the motion known as Carter's constant.[1]

References

  1. Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review 174 (5): 15591571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.


This article is issued from Wikipedia - version of the Wednesday, March 12, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.