Brus equation

The Brus equation[1] can be used to describe the emission energy of quantum dot semiconductor nanocrystals (such as CdSe nanocrystals) in terms of the band gap energy Egap, Planck's constant h, the radius of the quantum dot r, as well as the effective mass of the excited electron me* and of the electron hole mh*.

The radius of the quantum dot affects the wavelength of the emitted light due to quantum confinement, and this equation describes the effect of changing the radius of the quantum dot on the wavelength λ of the emitted light (and thereby on the emission energy ΔE = hc/λ, where c is the speed of light). This is useful for calculating the radius of a quantum dot from experimentally determined parameters.

The overall equation is[2]

\Delta E(r) = E_\mathrm{gap} + \frac{h^2}{8r^2} \left(1/m_\mathrm{e}^* + 1/m_\mathrm{h}^*\right) .

Egap, me*, and mh* are unique for each nanocrystal composition. For example, with CdSe nanocrystals:

Egap (CdSe) = 1.74 eV = 2.8·10−19 Joules,
me* (CdSe) = 0.13 me = 1.18·10−31 kg,
mh* (CdSe) = 0.45 me = 4.09·10−31 kg.

References

  1. Brus, L (1986). "Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory". The Journal of Physical Chemistry 90 (12): 2555–2560. doi:10.1021/j100403a003.
  2. Kippeny, T; Swafford, L.A.; Rosenthal, S.A. (2002). "Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box". Journal of Chemical Education 79 (9): 1094–1100. Bibcode:2002JChEd..79.1094K. doi:10.1021/ed079p1094.
This article is issued from Wikipedia - version of the Saturday, October 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.