Carbon dioxide laser

A test target is vaporized and bursts into flame upon irradiation by a high power continuous wave carbon dioxide laser emitting tens of kilowatts of infrared light.

The carbon dioxide laser (CO2 laser) was one of the earliest gas lasers to be developed (invented by Kumar Patel of Bell Labs in 1964[1]), and is still one of the most useful. Carbon dioxide lasers are the highest-power continuous wave lasers that are currently available. They are also quite efficient: the ratio of output power to pump power can be as large as 20%. The CO2 laser produces a beam of infrared light with the principal wavelength bands centering on 9.4 and 10.6 micrometers.

Amplification

The active laser medium (laser gain/amplification medium) is a gas discharge which is air-cooled (water-cooled in higher power applications). The filling gas within the discharge tube consists of around 10–20% carbon dioxide (CO
2
), around 10–20% nitrogen (N
2
), a few percent hydrogen (H
2
) and/or xenon (Xe) (usually only used in a sealed tube), and the remainder of the gas mixture helium (He). The specific proportions vary according to the particular laser.

The population inversion in the laser is achieved by the following sequence: electron impact excites vibrational motion of the nitrogen. Because nitrogen is a homonuclear molecule, it cannot lose this energy by photon emission, and its excited vibrational levels are therefore metastable and live for a long time. Collisional energy transfer between the nitrogen and the carbon dioxide molecule causes vibrational excitation of the carbon dioxide, with sufficient efficiency to lead to the desired population inversion necessary for laser operation. The nitrogen molecules are left in a lower excited state. Their transition to ground state takes place by collision with cold helium atoms. The resulting hot helium atoms must be cooled in order to sustain the ability to produce a population inversion in the carbon dioxide molecules. In sealed lasers, this takes place as the helium atoms strike the walls of the container. In flow-through lasers, a continuous stream of CO2 and nitrogen is excited by the plasma discharge and the hot gas mixture is exhausted from the resonator by pumps.

Construction

Because CO2 lasers operate in the infrared, special materials are necessary for their construction. Typically, the mirrors are silvered, while windows and lenses are made of either germanium or zinc selenide. For high power applications, gold mirrors and zinc selenide windows and lenses are preferred. There are also diamond windows and lenses in use. Diamond windows are extremely expensive, but their high thermal conductivity and hardness make them useful in high-power applications and in dirty environments. Optical elements made of diamond can even be sand blasted without losing their optical properties. Historically, lenses and windows were made out of salt (either sodium chloride or potassium chloride). While the material was inexpensive, the lenses and windows degraded slowly with exposure to atmospheric moisture.

The most basic form of a CO2 laser consists of a gas discharge (with a mix close to that specified above) with a total reflector at one end, and an output coupler (a partially reflecting mirror) at the output end.[2]

The CO2 laser can be constructed to have continuous wave (CW) powers between milliwatts (mW) and hundreds of kilowatts (kW).[3] It is also very easy to actively Q-switch a CO2 laser by means of a rotating mirror or an electro-optic switch, giving rise to Q-switched peak powers of up to gigawatts (GW).[4]

Because the laser transitions are actually on vibration-rotation bands of a linear triatomic molecule, the rotational structure of the P and R bands can be selected by a tuning element in the laser cavity. Prisms are not practical as tuning elements because most media that transmit in the mid-infrared absorb or scatter some of the light, so the frequency tuning element is almost always a diffraction grating. By rotating the diffraction grating, a particular rotational line of the vibrational transition can be selected. The finest frequency selection may also be obtained through the use of an etalon. In practice, together with isotopic substitution, this means that a continuous comb of frequencies separated by around 1 cm−1 (30 GHz) can be used that extend from 880 to 1090 cm−1. Such "line-tuneable" carbon dioxide lasers[5] are principally of interest in research applications.

Applications

A medical CO2 laser

Industrial (cutting and welding)

Because of the high power levels available (combined with reasonable cost for the laser), CO2 lasers are frequently used in industrial applications for cutting and welding, while lower power level lasers are used for engraving.[6]

Medical (soft-tissue surgery)

They are also very useful in surgical procedures because water (which makes up most biological tissue) absorbs this frequency of light very well. Some examples of medical uses are laser surgery and skin resurfacing ("laser facelifts", which essentially consist of vaporizing the skin to promote collagen formation).[7] Also, it could be used to treat certain skin conditions such as hirsuties papillaris genitalis by removing embarrassing or annoying bumps, podules, etc. Researchers in Israel are experimenting with using CO2 lasers to weld human tissue, as an alternative to traditional sutures.[8]

The CO2 laser remains the best surgical laser for the soft tissue where both cutting and hemostasis is achieved photo-thermally (radiantly).[9][10][11][12] CO2 lasers can be used in place of a scalpel for most procedures, and are even used in places a scalpel would not be used, in delicate areas where mechanical trauma could damage the surgical site. CO2 lasers are the best suited for soft tissue procedures in human and animal specialties, as compared to other laser wavelengths. Advantages include less bleeding, shorter surgery time, less risk of infection, and less post-op swelling. Applications include gynecology, dentistry, OMS, and many others.[13]

Other

The common plastic poly (methyl methacrylate) (PMMA) absorbs IR light in the 2.8–25 µm wavelength band, so CO2 lasers have been used in recent years for fabricating microfluidic devices from it, with channel widths of a few hundred micrometers.[14]

Because the atmosphere is quite transparent to infrared light, CO2 lasers are also used for military rangefinding using LIDAR techniques.

CO2 lasers are used in the Silex process to enrich uranium.

The Soviet Polyus was designed to use a megawatt carbon-dioxide laser as an orbit to orbit weapon to destroy SDI satellites.

See also

References

  1. Patel, C. K. N. (1964). "Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2". Physical Review 136 (5A): A1187–A1193. Bibcode:1964PhRv..136.1187P. doi:10.1103/PhysRev.136.A1187.
  2. "Output Couplers". ophiropt.com. Ophir Optronics Solutions Ltd. Retrieved 17 February 2014.
  3. "Carbon-Based Curtain Absorbs Stray Laser Light". Tech Briefs Media Labs. 30 November 2007. Retrieved 17 February 2014.
  4. Carbon Dioxide Amplifier at Brookhaven National Lab
  5. F. J. Duarte (ed.), Tunable Lasers Handbook (Academic, New York, 1995) Chapter 4.
  6. Andreeta, M. R. B.; Cunha, L. S.; Vales, L. F.; Caraschi, L. C.; Jasinevicius, R. G. (2011). "Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser". Journal of Micromechanics and Microengineering 21 (2): 025004. Bibcode:2011JMiMi..21b5004A. doi:10.1088/0960-1317/21/2/025004.
  7. Barton, Fritz (2014). "Skin Resurfacing". In Charles Thorne. Grabb and Smith's Plastic Surgery (7 ed.). Philadelphia: Lippincott Williams & Wilkins. p. 455. ISBN 978-1-4511-0955-9. For practical purposes, there are three methods of resurfacing: mechanical sanding (dermabrasion), chemical burn (chemical peels), and photodynamic treatments (laser ablation or coagulation).
  8. "Israeli researchers pioneer laser treatment for sealing wounds". Israel21c. November 16, 2008. Retrieved Mar 8, 2009.
  9. Vogel, A; Venugopalan, V (2003). "Mechanisms of pulsed laser ablation of biological tissues". Chem Rev 2 (103): 577–644.
  10. Vitruk, Peter (2014). "Oral soft tissue laser ablative and coagulative efficiencies spectra". Implant Practice US 6 (7): 22–27.
  11. Fisher, JC (1993). "Qualitative and quantitative tissue effects of light from important surgical lasers". Laser surgery in gynecology: a clinical guide (Saunders): 58–81.
  12. Fantarella, D; Kotlow, L (2014). "The 9.3µm CO2 Dental Laser" (PDF). Scientific Review. J Laser Dent 1 (22): 10–27.
  13. "Soft-Tissue CO2 Laser Surgery - LightScalpel".
  14. "CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems". Retrieved 21 October 2009.

External links

This article is issued from Wikipedia - version of the Saturday, April 16, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.