Calderón projector

In applied mathematics, the Calderón projector is a pseudo-differential operator used widely in boundary element methods. It is named after Alberto Calderón.

Definition

The interior Calderón projector is defined to be:[1]

\mathcal{C}=\left(\begin{array}{cc}(1-\sigma)\mathsf{Id}-\mathsf{K}&\mathsf{V}\\\mathsf{W}&\sigma\mathsf{Id}+\mathsf{K}'\end{array}\right),

where \sigma is \tfrac12 almost everywhere, \mathsf{Id} is the identity boundary operator, \mathsf{K} is the double layer boundary operator, \mathsf{V} is the single layer boundary operator, \mathsf{K}' is the adjoint double layer boundary operator and \mathsf{W} is the hypersingular boundary operator.

The exterior Calderón projector is defined to be:[2]

\mathcal{C}=\left(\begin{array}{cc}\sigma\mathsf{Id}+\mathsf{K}&-\mathsf{V}\\-\mathsf{W}&(1-\sigma)\mathsf{Id}-\mathsf{K}'\end{array}\right).

References

  1. Steinbach, Olaf (2008). Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer. p. 137. ISBN 978-0-387-31312-2.
  2. Steinbach, Olaf (2008). Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer. p. 182. ISBN 978-0-387-31312-2.
This article is issued from Wikipedia - version of the Friday, February 26, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.