CamPro engine

The CamPro engine is the first automotive engine developed together with Lotus by the Malaysian carmaker, Proton. The name CamPro is short for Cam Profiling. This engine powers the Proton Gen-2, Proton Satria Neo, Proton Waja Campro, Proton Persona, Proton Saga, Proton Exora, Proton Preve, Proton Suprima S and Proton Iriz. The CamPro engine was created to show Proton's ability to make its own engines that produce good power output and meet newer emission standards. The engine prototype was first unveiled on 6 October 2000 at the Lotus factory in UK before it debuted in the 2004 Proton Gen•2.[1]

All CamPro engines incorporate drive-by-wire technology (specifically electronic throttle control) for better response,[2] eliminating the need for friction-generating mechanical linkages and cables.

CamPro technical specifications

1.3 L CAMPRO 1.6 L CAMPRO 1.3 L CAMPRO IAFM 1.6 L CAMPRO IAFM 1.3 L CAMPRO IAFM+ 1.6 L CAMPRO IAFM+ 1.6 L CAMPRO CPS 1.6 L CAMPRO CFE 1.3 L CAMPRO VVT 1.6 L CAMPRO VVT
Valve mechanism 16-Valve DOHC 16-Valve DOHC 16-Valve DOHC 16-Valve DOHC 16-Valve DOHC 16-Valve DOHC 16-Valve VVL DOHC 16-Valve Turbo Charged DOHC 16-Valve VVT DOHC 16-Valve VVT DOHC
Total displacement 1,322 cc 1,597 cc 1,322 cc 1,597 cc 1,322 cc 1,597 cc 1,597 cc 1,561 cc 1,322 cc 1,597 cc
Bore 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in) 76 mm (3.0 in)
Stroke 73.4 mm (2.9 in) 88 mm (3.5 in) 73.4 mm (2.9 in) 88 mm (3.5 in) 73.4 mm (2.9 in) 88 mm (3.5 in) 88 mm (3.5 in) 86 mm (3.4 in) 73.4 mm (2.9 in) 88 mm (3.5 in)
Max output (/rpm) 70 kW (95 PS; 94 hp) /6000 82 kW (111 PS; 110 hp) /6000 73 kW (99 PS; 98 hp) /6500 81 kW (110 PS; 109 hp) /6500 70 kW (95 PS; 94 hp) /5750 81 kW (110 PS; 109 hp) /5750 93 kW (126 PS; 125 hp) /6500 103 kW (140 PS; 138 hp) /5000 70 kW (95 PS; 94 hp) /5750 80 kW (109 PS; 107 hp) /5750
Max torque (/rpm) 120 N·m (89 lb·ft) /4000 148 N·m (109 lb·ft) /4500 113.2 N·m (83 lb·ft) /4000 148 N·m (109 lb·ft) /4000 120 N·m (89 lb·ft) /4000 150 N·m (111 lb·ft) /4000 150 N·m (111 lb·ft) /4500 205 N·m (151 lb·ft) /2000-4000 120 N·m (89 lb·ft) /4000 150 N·m (111 lb·ft) /4500
Fuel type Petrol Petrol Petrol Petrol Petrol Petrol Petrol Petrol Petrol Petrol

Variants

Basic DOHC engine

The basic CamPro engine used in older Gen-2 models.

The basic CamPro engine is used in older Gen•2 models and coded as S4PH. It is a DOHC 16-valve 1.6-litre engine that produces 110 bhp (82 kW) at 6,000 rpm of power and 148 N·m (109 ft·lbf) of torque. This is the engine that powers the Proton Gen•2. The S4PH engine can be fitted with Cam Profile Switching (CPS) and Variable Inlet Manifold (VIM) technology. Besides this 1.6-litre engine, Proton has produced the 1.3-litre version of the CamPro engine.

Even though the S4PH engine seems to be quite powerful at higher revs, its performance is reportedly sluggish at lower revs. This is proven by driving the Gen•2 uphill, where drivers who drive the manual transmission version have to periodically shift between 2nd gear and 3rd gear. This is due to its torque dip in the crucial 2,000 - 3,000 rpm range where the torque actually decreases before picking up back to the maximum torque at 4,000 rpm. This torque characteristic can be clearly seen in manufacturer published engine performance curves.

Another engine option for the basic DOHC engine is a 1.3-litre engine coded as S4PE. The S4PE engine produces 94 bhp (70 kW; 95 PS) at 6,000 rpm and the torque of 120 N·m (89 lb·ft) at 4,000 rpm, which is more powerful than the other 1.3-litre rivals, even variable valve timing technology, it also (like its bigger brother) displays a torque dip at typical engine speeds of 2,000-3,000 rpm.

The bore x stroke dimensions for both engines are as follows:-

Applications:

CamPro CPS and VIM engine

The Campro CPS 1.6L engine inside the Proton Satria Neo CPS R3 engine bay.

The CamPro CPS engine uses a variable valve lift system (Cam Profile Switching system) and a variable length intake manifold (VIM; not to be confused with the stand-alone IAFM used in the 2008 Proton Saga) to boost maximum power and improve the CPS engine's torque curve over the standard DOHC CamPro engine.

The engine's Variable-length Intake Manifold (VIM) switches between a long intake manifold at low engine speeds and a short intake manifold at higher engine speeds. Proton cars use a longer intake manifold to achieve slower air flow; as it was found that promotes better mixing with fuel. The short intake manifold allows more air in faster. This is beneficial at high RPMs.

The Cam Profile Switching (CPS) system uses a tri-lobe camshaft to switch between two different cam profiles. One cam profile provides low valve lift, while the other cam profile has a high valve lift. The low valve lift cam profile is used at low to mid engine speeds to maintain idling quality and reduce emissions, while the high lift cam profile is used when the engine is spinning at mid to high engine speeds improve peak horsepower and torque. Unlike the other similar variable valve timing systems such as the Honda VTEC, the Toyota VVT-i and the Mitsubishi MIVEC which use rocker arm locking pins to change the valve timing, the CPS system uses direct-acting tappets with locking pins to change the valve timing and lift profile.

VIM switches from the long to short runner at 4,800 rpm, while the CPS system switches over at 3,800rpm (4,400 rpm in the Proton Satria Neo CPS[3]). The result is 125 bhp (93 kW; 127 PS) at 6,500 rpm and 150 N·m (110 ft·lbf) of torque at 4,500 rpm compared to the non-CPS CamPro’s 110 bhp (82 kW; 112 PS) at 6,000 rpm and 148 N·m (109 ft·lbf) of torque at 4,000 rpm. Proton claims that there is better response and torque at low engine speeds of between 2000 - 2500 rpm.

The new CPS engine first made its debut in the face-lifted Proton Gen•2 launched in Thailand in 2008,[4] and made its first Malaysian debut in the Proton Waja CamPro 1.6 Premium (CPS).

Applications:

CamPro IAFM engine

A Campro 1.3L IAFM mounted on a second generation Proton Saga.

The CamPro IAFM (Intake Air-Fuel Module) is essentially a basic DOHC CamPro engine equipped with a variable-length intake manifold, developed under a joint fast track programme that began in April 2005 by EPMB, Bosch and Proton. However, the IAFM differs from the VIM (Variable Inlet Manifold) for the CamPro CPS engine in terms as follows:

  1. The IAFM is a stand-alone module that can be fitted with a basic DOHC CamPro engine whereas the VIM needs to work in conjunction with the CPS system in a CamPro CPS engine.
  2. The IAFM is operated by the engine vacuum, while the VIM uses an ECU-controlled solenoid.

The Intake Air-Fuel Module for the Proton's CamPro engine debuted in the second-generation Proton Saga, which was launched on 18 January 2008. It was first made known to the public in October 2006, when it was still in its advanced tooling stages.

With the IAFM, the 1.3L engine used in the Proton Saga now produces 98 bhp (73 kW) @ 6,500rpm.[6] The maximum torque is slightly reduced to 113.2 N·m (83.5 ft·lbf); however, the engine has broader torque range and the noticeable torque dip in the basic DOHC CamPro engine has been eliminated.[6] The official brochure is only published with the familiar 94 bhp (70 kW; 95 PS) at 6,000 rpm power and 120 N·m (89 lb·ft) at 4,000 rpm torque for consistency with other 1.3-litre Proton models.

Meanwhile, the output of the 1.6-litre version of the IAFM engine which debuted in the 2008 Proton Gen-2 M-Line produces 110 bhp (82 kW) @ 6,500 rpm of power and 148 N·m (109 ft·lbf) of torque, and the torque dip around 2,500-3,500 rpm has been eliminated.

The second-generation Campro IAFM engine, known as IAFM+ engine, was debuted in the 2011 Proton Saga FLX.[7] The new IAFM+ engine is tweaked to be paired with the new CVT gearbox by Punch Powertrain that requires the maximum operating engine speed to be reduced from the previous 6,500 rpm in the first-generation IAFM engine to only 6,000 rpm.[8] As a result, the 1.3L IAFM+ engine produces 94 bhp (70 kW) @ 5,750 rpm of horsepower and 120 N·m (89 ft·lbf) of torque, while the 1.6L IAFM+ engine produces 108 bhp (81 kW) @ 5,750 rpm of horsepower and 150 N·m (110 ft·lbf) of torque.[9][10] The combination of the new Campro IAFM+ engine with the CVT gearbox results 4% and 10% reduction on fuel consumption for urban and highway driving respectively.[7]

Applications:

Hybrid CamPro engine

In March 2007, Proton and Lotus have announced their concept model of a Proton Gen-2 powered by a hybrid powerplant that uses the CamPro engine. The concept model was revealed during the 2007 Geneva Motor Show from 8 ~ 18 March 2007.[11]

The hybrid power-plant system, which is known as EVE system (Efficient, Viable, Environmental) will be using the same S4PH engine as the one that powers the present gasoline version of the Gen•2, combined together with a 30 kW, 144V electric motor. The main purpose of the hybrid powerplant system is to provide a hybrid system that can be retrofitted to existing models, retaining the same power-plant and also eliminating the need to develop a completely different platform, like the Honda Civic Hybrid. Unlike the IMA (Integrated Motor Assist) technology in the Civic Hybrid that uses a bulky Ni-MH battery pack, the EVE Hybrid system will use a Li-ion battery pack inside the engine bay.

The EVE Hybrid System will have 3 key technologies:

  1. "Micro-hybrid" start-stop system - An integrated starter-alternator system is installed to switch off the engine automatically when the engine stops, for example at a traffic light. The engine will automatically restart when the gas pedal is depressed.
  2. Full parallel hybrid technology - Combines the existing S4PH engine with a 30 kW, 144V electric motor, resulting in higher power (141 bhp combined), higher torque (233 N-m combined), lower emission (up to 22% carbon dioxide reduction) and better fuel economy (up to 4.6 L/100 km). The system also includes regenerative braking system.
  3. Continuously Variable Transmission (CVT) - The CVT system provides an infinite number of gear ratios for better efficiency.

The combined power and torque for the power-plant system are as follows:

Proton will start commercialising their upcoming hybrid vehicles equipped with the EVE Hybrid System in the future.

CamPro CFE engine

The CamPro CFE engine is the light-pressure intercooled turbocharged version of the 1.6-litre CamPro engine, with the maximum boost pressure of 0.75 bar (75 kPa; 10.9 psi). The CFE is the acronym of "Charged Fuel Efficiency".[12]

The idea of the production was first revealed by Proton Managing Director Datuk Syed Zainal Abidin on 13 December 2008, due to the new market trend of having small displacement engine but forced-aspirated to produce the power output equivalent to a larger motor, a similar concept as the Volkswagen TSI twincharger technology and the Ford EcoBoost engine.[13] The finalised engine was debuted during the KLIMS 2010.[14]

The engine is capable of producing 138 bhp (103 kW; 140 PS) at 5,000 rpm of power and 205 N·m (151 lb·ft) at 2,000-4,000 rpm of torque.[12] To accommodate the increase of engine power, several changes to the technical specification have been done.[14] While the engine bore remains at 76 mm (3.0 in), the stroke is shortened to 86 mm (3.4 in) compared with 88 mm (3.5 in) as in other 1.6L Campro engine variants, resulting the engine displacement of 1561 cc. The compression ratio is reduced to 8.9:1 from the previous 10:1. A variable valve timing mechanism is also added for the intake valves, but it alters the cam phasing and valve opening timing continuously rather than altering the valve lift at a preset engine speed as in the CPS mechanism.[15]

Applications:

CamPro VVT engine

The CamPro VVT (Variable Valve Timing) is essentially a basic DOHC CamPro engine equipped with a variable-valve timing for more fuel efficiency during low RPM and more power during high RPM, developed for the Proton Iriz.

The engine is capable to produce 94 bhp (70 kW; 95 PS) at 5,750 rpm of power and 120 N·m (89 lb·ft) at 4,000 rpm of torque for the 1.3 variant compared to the 1.6 variant which delivers 107 bhp (80 kW; 108 PS) at 5,750 rpm of power and 150 N·m (111 lb·ft) at 4,000 rpm of torque. While the engine bore for the 1.3 variant is 76 mm (3.0 in), the stroke is 73.4 mm (2.9 in) compared with the 1.6 variant which is 88 mm (3.5 in).

Applications:

Future plans

See also: Proton E01 engine and Proton GDi engine

Currently, Proton is planning to develop a new engine known as the code name "GDi/TGDi engine" with option of displacement between 1.0/1.2L three cylinders,1.3/1.5 non aspirated and turbocharged and progressively 2.0 L, 2.3 L all in the variant of either natural aspirated or in force induction type. The existing CamPro engines which are limited to 1.3-litre and 1.6-litre engine options only will be EOL (End of Life) soon after.The 1.3 and 1.5 turbo slated to churns out 140hp/210nm & 180hp/250nm respectively.

See also

References

  1. The History of Proton - from Proton's official web site.
  2. Campro Engine - from Proton official website http://www.proton.com
  3. Hezeri Samsuri (20 February 2009). "Satria Neo CPS lebih gagah (Malay)". BH Auto.
  4. Proton sets foot in Thailand - from Proton's official website http://www.proton.com
  5. Proton Gen2 updated: Campro CPS for M-Line too! - paultan.org, 20 May 2010.
  6. 1 2 First Looks: The New Proton Saga - from Malaysian Motor Trader. Retrieved on 20 January 2008.
  7. 1 2 Anthony Lim (26 July 2011). "Proton Saga FLX 1.3L launched – CVT, ABS and EBD on". Paul Tan. Retrieved 1 December 2011.
  8. Punch Powertrain VT2 CVT gearbox technical specifications
  9. Proton Saga FLX 1.3 official brochure - from Proton Saga FLX microsite.
  10. Proton Saga FLX SE 1.6official brochure - from Proton Saga FLX microsite.
  11. Lotus Bringing Plug-N-Play Hybrid Drivetrain System To Geneva Winding Road, 5 March 2007
  12. 1 2 3 Anthony Lim (12 December 2011). "Proton Exora Prime – CFE variant photos leaked!". paultan.org. Retrieved 13 December 2011.
  13. Scaling Up - Zawya.com. Accessed on 13 December 2008.
  14. 1 2 "Enjin CAMPRO CFE (Turbo) di KLIMS 2010!!!". Funtasticko Design. 5 December 2010. Retrieved 11 December 2011.
  15. Danny Tan (22 December 2011). "DRIVEN: Proton Exora Bold Turbo, our first impressions". paultan.org. Retrieved 24 December 2011.

External links

Wikimedia Commons has media related to Proton engines.
This article is issued from Wikipedia - version of the Monday, April 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.