Cardiovascular physiology
Cardiovascular physiology is the study of the circulatory system, specifically addressing the physiology of the heart ("cardio") and blood vessels ("vascular").
These subjects are sometimes addressed separately, under the names cardiac physiology and circulatory physiology.[1]
Although the different aspects of cardiovascular physiology are closely interrelated, the subject is still usually divided into several subtopics.
Heart
Main article: Cardiac physiology
- Cardiac output (= heart rate * stroke volume. Can also be calculated with Fick principle.)
- Stroke volume (= end-diastolic volume - end-systolic volume)
- Ejection fraction (= stroke volume / end-diastolic volume)
- ((Cardiac Output)) is mathematically ` to ((Systole))
- Inotropic, chronotropic, and dromotropic states
- Cardiac input (= heart rate * suction volume Can be calculated by inverting terms in Fick principle)
- Suction volume (= end-systolic volume + end-diastolic volume)
- Injection fraction (=suction volume / end-systolic volume)
- Cardiac input is mathematically ` to (Diastole))
- Electrical conduction system of the heart
- Electrocardiogram
- Cardiac marker
- Cardiacs action potential
- Frank–Starling law of the heart
- Wiggers diagram
- Pressure volume diagram
Regulation of blood pressure
- Baroreceptor
- Baroreflex
- Renin-angiotensin system
- Juxtaglomerular apparatus
- Aortic body and carotid body
- Autoregulation
Hemodynamics
Under most circumstances, the body attempts to maintain a steady mean arterial pressure.
When there is a major and immediate decrease (such as that due to hemorrhage or standing up), the body can increase the following:
- Heart
- Total peripheral resistance (primarily due to vasoconstriction of arteries)
- Inotropic state
In turn, this can have a significant impact upon several other variables:
- Stroke volume
- Cardiac output
- Pressure
- Pulse pressure (systolic pressure - diastolic pressure)
- Mean arterial pressure (usually approximated with diastolic pressure + 1/3 pulse pressure)
- Central venous pressure
Regional circulation
Name of circulation | % of cardiac output | Autoregulation | Perfusion | Comments |
pulmonary circulation | 100% (deoxygenated) | Vasoconstriction in response to hypoxia | ||
cerebral circulation | 15%[2] | high | under-perfused | Fixed volume means intolerance of high pressure. Minimal ability to use anaerobic respiration |
coronary circulation | 5% | high | under-perfused | Minimal ability to use anaerobic respiration. Blood flow through the left coronary artery is at a maximum during diastole (in contrast to the rest of systemic circulation, which has a maximum blood flow during systole.) |
splanchnic circulation | 15% | low | Flow increases during digestion. | |
hepatic circulation | 15% | Part of portal venous system, so oncotic pressure is very low | ||
renal circulation | 25% | high | over-perfused | Maintains glomerular filtration rate |
skeletal muscular circulation | 17%[3] | Perfusion increases dramatically during exercise. | ||
cutaneous circulation | 2%[4] | over-perfused | Crucial in thermoregulation. Significant ability to use anaerobic respiration |
References
- ↑ Overview at Medical College of Georgia
- ↑ Physiology: 3/3ch11/s3c11_13 - Essentials of Human Physiology
- ↑ Physiology: 3/3ch11/s3c11_2 - Essentials of Human Physiology
- ↑ Physiology: 3/3ch11/s3c11_10 - Essentials of Human Physiology
External links
- Cardiovascular physiology at the US National Library of Medicine Medical Subject Headings (MeSH)
- Cardiovascular Physiology Concepts - Comprehensive explanation of basic cardiovascular concepts, based on a textbook of the same name.
- The Gross Physiology of the Cardiovascular System - Mechanical overview of cardiovascular function. Free eBook and video resources.
- Clinical Sciences - Cardiovascular An iPhone app covering detailed cardiovascular physiology and anatomy
- Quantitative Cardiovascular Physiology and Clinical Applications for Engineers
|
This article is issued from Wikipedia - version of the Sunday, March 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.