Carnivore

A carnivore /ˈkɑːrnɪvɔər/ meaning 'meat eater' (Latin, caro meaning 'meat' or 'flesh' and vorare meaning 'to devour') is an organism that derives its energy and nutrient requirements from a diet consisting mainly or exclusively of animal tissue, whether through predation or scavenging.[1][2] Animals that depend solely on animal flesh for their nutrient requirements are called obligate carnivores while those that also consume non-animal food are called facultative carnivores.[2] Omnivores also consume both animal and non-animal food, and apart from the more general definition, there is no clearly defined ratio of plant to animal material that would distinguish a facultative carnivore from an omnivore.[3] A carnivore that sits at the top of the foodchain is termed an apex predator.

Plants that capture and digest insects (and, at times, other small animals) are called carnivorous plants. Similarly, fungi that capture microscopic animals are often called carnivorous fungi.

Classification

The word "carnivore" sometimes refers to the mammalian order Carnivora, but this is somewhat misleading. While many Carnivora meet the definition of being meat eaters, not all do, and even fewer are true obligate carnivores (see below). For example, most species of bears are actually omnivorous, except for the giant panda, which is almost exclusively herbivorous, and the exclusively meat-eating polar bear, which lives in the Arctic, where few plants grow. In addition, there are plenty of carnivorous species that are not members of Carnivora.

Outside the animal kingdom, there are several genera containing carnivorous plants and several phyla containing carnivorous fungi. The former are predominantly insectivores, while the latter prey mostly on microscopic invertebrates, such as nematodes, amoebae and springtails.

Carnivores that eat insects and similar invertebrates primarily or exclusively are called insectivores, while those that eat fish primarily or exclusively are called piscivores. Large piscivore amphibians that evolved 400 million years ago were the first vertebrates to conquer land. Insectivores evolved next and predators of other vertebrates after that.[4]

An example of a carnivorous insect is Philanthus gibbosus. This is a unique case of carnivore because it is an insect consuming another insect. P. gibbosus is a species of wasp that has been observed to paralyze bee species, coat them in pollen, and feed them to developing offspring. In the early stages of larval development, the coat of pollen serves as an additional source of protein for the young wasps. However, as the species ages, it transitions into a diet consisting entirely of pollen.

Carnivores may alternatively be classified according to the percentage of meat in their diet. The diet of a hypercarnivore consists of more than 70% meat, that of a mesocarnivore 50-70%, and that of a hypocarnivore less than 30%, with the balance consisting of non-animal foods, which may include fruits, other plant material, or fungi.

Obligate carnivores

This Bengal tiger's sharp teeth and strong jaws are the classical physical traits expected from carnivorous mammalian predators

Obligate carnivores or "true" carnivores depend on the nutrients found only in animal flesh for their survival. While they may consume small amounts of plant material, they lack the physiology required for the efficient digestion of vegetable matter and, in fact, some carnivorous mammals eat vegetation specifically as an emetic. For instance, felids including the domestic cat are obligate carnivores requiring a diet of primarily animal flesh and organs.[5] Specifically, cats have high protein requirements and their metabolisms appear unable to synthesize certain essential nutrients (including retinol, arginine, taurine, and arachidonic acid), and thus they rely on animal flesh in their diet to supply these nutrients.[6][7] Synthetic forms of essential nutrients such as taurine in the lab have allowed feed manufacturers to formulate foods for carnivores including domestic pets and zoo animals with varying amounts of plant material.

Characteristics of carnivores

Characteristics commonly associated with carnivores include organs for capturing and disarticulating prey (teeth and claws serve these functions in many vertebrates) and status as a predator. In truth, these assumptions may be misleading, as some carnivores do not hunt and are scavengers (though most hunting carnivores will scavenge when the opportunity exists). Thus they do not have the characteristics associated with hunting carnivores. Carnivores have comparatively short digestive systems, as they are not required to break down tough cellulose found in plants. Many animals that hunt other animals have evolved eyes that face forward, thus making depth perception possible. This is almost universal among mammalian predators. Other predators, like crocodiles, have sideways facing eyes and hunt by ambush rather than pursuit.

Prehistoric carnivores

The first vertebrate carnivores were fish, and then amphibians that moved on to land. Early tetrapods were large amphibious piscivores. Some scientists assert that Dimetrodon "was the first terrestrial vertebrate to develop the curved, serrated teeth that enable a predator to eat prey much larger than itself."[8] While amphibians continued to feed on fish and later insects, reptiles began exploring two new food types, tetrapods (carnivory), and later, plants (herbivory). Carnivory was a natural transition from insectivory for medium and large tetrapods, requiring minimal adaptation (in contrast, a complex set of adaptations was necessary for feeding on highly fibrous plant materials).[4]

Carnivoramorphs are currently the dominant carnivorous mammals, and have been so since the Miocene. In the early to mid-Cenozoic, however, hyaenodonts, oxyaenid, entelodonts, ptolemaiidans, "arctocyonids" and "mesonychians" were dominant instead, representing a very high diversity of eutherian carnivores in the northern continents and Africa. In South America, sparassodonts were dominant instead, while Australia saw the presence of several marsupial predators, such as the dasyuromorphs and thylacoleonids.

In the Mesozoic, while theropods were the larger carnivores, several carnivorous mammal groups were already present. Most notable are the gobiconodontids, the triconodontid Jugulator, the deltatheroideans and Cimolestes. Many of these, such as Repenomamus, Jugulator and Cimolestes, were among the largest mammals in their faunal assemblages, capable of attacking dinosaurs.[9][10][11]

Most carnivorous mammals, from dogs to Deltatheridium, share several adaptations in common, such as carnassialiforme teeth, long canines and even similar tooth replacement patterns.[12] Most aberrant are thylacoleonids, which bear a diprodontan dentition completely unlike that of any mammal, and "eutriconodonts" like gobioconodontids and Jugulator, by virtue of their cusp anatomy, though they still worked in the same way as carnassials.[13]

Some theropod dinosaurs such as Tyrannosaurus rex that existed during the Mesozoic Era were probably obligate carnivores.

See also

References

  1. Nutrient Requirements: Carnivores. Duane E. Ullrey. Encyclopedia of Animal Science.
  2. 1 2 Mammals: Carnivores. Duane E. Ullrey. Encyclopedia of Animal Science.
  3. Mammals"' Omnivores. Duane E. Ullrey. Encyclopedia of Animal Science.
  4. 1 2 Sahney, S., Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology 38 (12): 1079–1082. doi:10.1130/G31182.1.
  5. Velegrand-Defretin, Veronique (1994). "Differences between cats and dogs: a nutritional view" (PDF). Proceedings of the Nutrition Society 53: 15–24. doi:10.1079/pns19940004.
  6. Ullrey, D. E. (2004). "Mammals: Carnivores". In Pond, Wilson. Encyclopedia of Animal Science. CRC Press. p. 591. ISBN 9780824754969.
  7. Ullrey, D. E. (2004). "Nutrient Requirements: Carnivores". In Pond, Wilson. Encyclopedia of Animal Science. CRC Press. p. 670. ISBN 9780824754969.
  8. Foley, James A. (February 7, 2014). "Carnivorous, Pre-Dinosaur Predator was First to Evolve Steak Knife-like Teeth". Nature World News. Retrieved May 3, 2014.
  9. Zofia Kielan-Jaworowska, Richard L. Cifelli, Zhe-Xi Luo (2004). "Chapter 12: Metatherians". Mammals from the Age of Dinosaurs: origins, evolution, and structure. New York: Columbia University Press. pp. 425–262. ISBN 0-231-11918-6.
  10. Richard C. Fox (2015) A revision of the Late Cretaceous–Paleocene eutherian mammal Cimolestes Marsh, 1889. Canadian Journal of Earth Sciences (advance online publication)
  11. Cifelli, Richard L.; Madsen, Scott K. (1998). "Triconodont mammals from the medial Cretaceous of Utah". Journal of Vertebrate Paleontology 18 (2): 403–411. doi:10.1080/02724634.1998.10011068.
  12. CHRISTIAN DE MUIZON and BRIGITTE LANGE-BADRÉ, Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction, Article first published online: 29 MAR 2007 DOI: 10.1111/j.1502-3931.1997.tb00481
  13. Zofia Kielan-Jaworowska, Richard L. Cifelli, Zhe-Xi Luo (2004). "Chapter 12: Metatherians". Mammals from the Age of Dinosaurs: origins, evolution, and structure. New York: Columbia University Press. pp. 425–262. ISBN 0-231-11918-6.

Further reading

This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.