Categorical set theory
Categorical set theory is any one of several versions of set theory developed from or treated in the context of mathematical category theory.
References
- Barr, M. and Wells, C., Category Theory for Computing Science, Hemel Hempstead, UK, 1990.
- Bourbaki, N., Elements of the History of Mathematics, John Meldrum (trans.), Springer-Verlag, Berlin, Germany, 1994.
- Kelley, J.L., General Topology, Van Nostrand Reinhold, New York, NY, 1955.
- Lambek, J. and Scott, P.J., Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK, 1986.
- Lawvere, F.W., and Rosebrugh, R., Sets for Mathematics, Cambridge University Press, Cambridge, UK, 2003.
- Lawvere, F.W., and Schanuel, S.H., Conceptual Mathematics, A First Introduction to Categories, Cambridge University Press, Cambridge, UK, 1997. Reprinted with corrections, 2000.
- Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993.
- Mitchell, J.C., Foundations for Programming Languages, MIT Press, Cambridge, MA, 1996.
- Nestruev, J., Smooth Manifolds and Observables, Springer-Verlag, New York, NY, 2003. ISBN 0-387-95543-7.
- Poizat, B., A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Moses Klein (trans.), Springer-Verlag, New York, NY, 2000.
See also
External links
- Rethinking set theory by Tom Leinster
This article is issued from Wikipedia - version of the Wednesday, June 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.