Cellular compartment

Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell, usually surrounded by a single or double lipid layer membrane. These compartments are often, but not always, defined as membrane enclosed regions. The formation of cellular compartments is called compartmentalization.

Both organelles, the mitochondria and chloroplasts (in photosynthetic organisms), are compartments. Other compartments such as peroxisomes, lysosomes, the endoplasmic reticulum, the cell nucleus or the Golgi apparatus are not of endosymbiotic origin. Smaller elements like vesicles, and sometimes even microtubules can also be counted as compartments.

It was thought that compartmentalization is not found in prokaryotic cells.,[1] but the discovery of carboxysomes and many other metabolosomes revealed that prokaryotic cells are capable of making compartmentalized structures, albeit these are in most cases not surrounded by a lipid bilayer, but of pure proteinaceous built.

Types

In general there are 4 main cellular compartments, they are:

  1. The nuclear compartment comprising the nucleus
  2. The intercisternal space which comprises the space between the membranes of the endoplasmic reticulum (which is continuous with the nuclear envelope)
  3. Organelles (the mitochondrion in all eukaryotes and the plastid in phototrophic eukaryotes)
  4. The cytosol

Function

Compartments have three main roles. One is to establish physical boundaries for biological processes that enables the cell to carry out different metabolic activities at the same time. This may include keeping certain biomolecules within a region, or keeping other molecules outside. Within the membrane-bound compartments, different intracellular pH, different enzyme systems, and other differences are isolated. With mitochondria, the cytosol has an oxidizing environment which converts NADH to NAD+. With these cases, the compartmentalization is physical.

Another is to generate a specific micro-environment to spatially or temporally regulate a biological process. As an example, a yeast vacuole is normally acidified by proton transporters on the membrane.

A third role is to establish specific locations or cellular addresses for which processes should occur. For example, a transcription factor may be directed to a nucleus, where it can promote transcription of certain genes.

For protein synthesis, all the organs used for it are relatively near one another, the nucleolus makes the ribosomes which synthesize the proteins, the rough endoplasmic reticulum (rough ER) is near the nucleus as well. The Golgi body is also near the rough ER for packaging and redistributing. The functional component of a eukaryotic cell is the organelles.

Establishment

Often, cellular compartments are defined by membrane enclosure. These membranes provide physical barriers to biomolecules. Transport across these barriers is often controlled in order to maintain the concentration of biomolecules within and outside of the compartment.

References

  1. Campbell, Neil A.; Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2008). Biology (8th ed.). p. 559. ISBN 978-0-8053-6844-4.


This article is issued from Wikipedia - version of the Thursday, February 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.