Chazy equation
In mathematics, the Chazy equation is the differential equation
It was introduced by Jean Chazy (1909, 1911) as an example of a third-order differential equation with a movable singularity that is a natural boundary for its solutions.
One solution is given by the Eisenstein series
Acting on this solution by the group SL2 gives a 3-parameter family of solutions.
References
- Chazy, J. (1909), "Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles", C.R. Acad. Sc. Paris (149)
- Chazy, J. (1911), "Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes", Acta Math. 34: 317–385, doi:10.1007/BF02393131
- Clarkson, Peter A.; Olver, Peter J. (1996), "Symmetry and the Chazy equation", J. Differential Equations 124 (1): 225–246, doi:10.1006/jdeq.1996.0008, MR 1368067
This article is issued from Wikipedia - version of the Wednesday, January 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.