Choquet integral
A Choquet integral is a subadditive or superadditive integral created by the French mathematician Gustave Choquet in 1953.[1] It was initially used in statistical mechanics and potential theory,[2] but found its way into decision theory in the 1980s,[3] where it is used as a way of measuring the expected utility of an uncertain event. It is applied specifically to membership functions and capacities. In imprecise probability theory, the Choquet integral is also used to calculate the lower expectation induced by a 2-monotone lower probability, or the upper expectation induced by a 2-alternating upper probability.
Using the Choquet integral to denote the expected utility of belief functions measured with capacities is a way to reconcile the Ellsberg paradox and the Allais paradox.[4][5]
Definition
The following notation is used:
-
- a set. -
- a collection of subsets of
. -
- a function. -
- a monotone set function.
Assume that
is measurable with respect to
, that is
Then the Choquet integral of
with respect to
is defined by:
where the integrals on the right-hand side are the usual Riemann integral (the integrands are integrable because they are monotone in
).
Properties
In general the Choquet integral does not satisfy additivity. More specifically, if
is not a probability measure, it may hold that
for some functions
and
.
The Choquet integral does satisfy the following properties.
Monotonicity
If
then
Positive homogeneity
For all
it holds that
Comonotone additivity
If
are comonotone functions, that is, if for all
it holds that
.
then
Subadditivity
If
is 2-alternating, then
Superadditivity
If
is 2-monotone, then
Alternative Representation
Let
denote a cumulative distribution function such that
is
integrable. Then this following formula is often referred to as Choquet Integral:
where
.
- choose
to get
, - choose
to get 
See also
Notes
- ↑ Choquet, G. (1953). "Theory of capacities". Annales de l'Institut Fourier 5: 131–295.
- ↑ Denneberg, D. (1994). Non-additive measure and Integral. Kluwer Academic.
- ↑ Grabisch, M. (1996). "The application of fuzzy integrals in multicriteria decision making". European Journal of Operational Research 89 (3): 445–456. doi:10.1016/0377-2217(95)00176-X.
- ↑ Chateauneuf, A.; Cohen, M. D. (2010). "Cardinal Extensions of the EU Model Based on the Choquet Integral". In Bouyssou, Denis; Dubois, Didier; Pirlot, Marc; Prade, Henri. Decision-making Process: Concepts and Methods. doi:10.1002/9780470611876.ch10.
- ↑ Sriboonchita, S., Wong, W. K., Dhompongsa, S., & Nguyen, H. T. (2010). Stochastic dominance and applications to finance, risk and economics. CRC Press.
Further reading
- Gilboa, I.; Schmeidler, D. (1992). "Additive Representations of Non-Additive Measures and the Choquet Integral".








