Clarkson's inequalities

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.

Statement of the inequalities

Let (X, Σ, μ) be a measure space; let f, g : X  R be measurable functions in Lp. Then, for 2  p < +∞,

\left\| \frac{f + g}{2} \right\|_{L^p}^p + \left\| \frac{f - g}{2} \right\|_{L^p}^p \le \frac{1}{2} \left( \| f \|_{L^p}^p + \| g \|_{L^p}^p \right).

For 1 < p < 2,

\left\| \frac{f + g}{2} \right\|_{L^p}^q + \left\| \frac{f - g}{2} \right\|_{L^p}^q \le \left( \frac{1}{2} \| f \|_{L^p}^p +\frac{1}{2} \| g \|_{L^p}^p \right)^\frac{q}{p},

where

\frac1{p} + \frac1{q} = 1,

i.e., q = p  (p  1).

The case p  2 is somewhat easier to prove, being a simple application of the triangle inequality and the convexity of

x \mapsto x^p. \,

References

External links

This article is issued from Wikipedia - version of the Wednesday, April 08, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.