Co-Büchi automaton
In automata theory, a co-Büchi automaton is a variant of Büchi automaton. The only difference is the accepting condition: a Co-Büchi automaton accepts an infinite word
if there exists a run, such that all the states occurring infinitely often in the run are in the final state set
. In contrast, a Büchi automaton accepts a word
if there exists a run, such that at least one state occurring infinitely often in the final state set
.
(Deterministic) Co-Büchi automata are strictly weaker than (nondeterministic) Büchi automata.
Formal definition
Formally, a deterministic co-Büchi automaton is a tuple
that consists of the following components:
-
is a finite set. The elements of
are called the states of
. -
is a finite set called the alphabet of
. -
is the transition function of
. -
is an element of
, called the initial state. -
is the final state set.
accepts exactly those words
with the run
, in which all of the infinitely often occurring states in
are in
.
In a non-deterministic co-Büchi automaton, the transition function
is replaced with a transition relation
. The initial state
is replaced with an initial state set
. Generally, the term co-Büchi automaton refers to the non-deterministic co-Büchi Büchi automaton.
For more comprehensive formalism see also ω-automaton.
Acceptance Condition
The acceptance condition of a co-Büchi automaton is formally

The Büchi acceptance condition is the complement of the co-Büchi acceptance condition:

Properties
Co-Büchi automata are closed under union, intersection, projection and determinization.