Colinear map

In coalgebra theory, the notion of colinear map is dual to the notion for linear map of vector space, or more generally, for morphism between R-module. Specifically, let R be a ring, M,N,C be R-modules, and

 \rho_M: M\rightarrow M\otimes C, \rho_N: N\rightarrow N\otimes C

be right C-comodules. Then an R-linear map  f:M\rightarrow N is called a (right) comodule morphism, or (right) C-colinear, if

 \rho_N \circ f = (f \otimes 1) \circ \rho_M

References


This article is issued from Wikipedia - version of the Wednesday, January 07, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.