Combined Array for Research in Millimeter-wave Astronomy

Combined Array for Research in Millimeter-wave Astronomy
Organisation California Institute of Technology
Location(s) Owens Valley Radio Observatory, United States of America
Coordinates 37°16′49″N 118°08′31″W / 37.2804°N 118.142°W / 37.2804; -118.142Coordinates: 37°16′49″N 118°08′31″W / 37.2804°N 118.142°W / 37.2804; -118.142
Website www.mmarray.org
Related media on Wikimedia Commons

The Combined Array for Research in Millimeter-wave Astronomy (CARMA) was an astronomical instrument comprising 23 radio telescopes. These telescopes formed an astronomical interferometer where all the signals are combined in a purpose-built computer (a correlator) to produce high-resolution astronomical images. The telescopes ceased operation in April 2015 and were relocated to the Owens Valley Radio Observatory for storage.

Location

According to the CARMA observatory catalog, the median height of all telescope pads was at an elevation of 2196.223 m (7205.807 ft). The observatory was located in the Inyo Mountains to the east of the Owens Valley Radio Observatory, at a site called Cedar Flat, accessed through Westgard Pass. The high elevation site was chosen to minimize millimeter wave absorption and phase decoherence by atmospheric water vapor.

Until the Atacama Large Millimeter Array in Chile is in full operation, this instrument was the most powerful millimeter wave interferometer in the world.

Features

This array was unique for being a heterogeneous collection of radio telescopes of varying sizes and design. There were three types of telescopes, all Cassegrain reflector antennas with parabolic primary mirrors and hyperbolic secondary mirrors:

Deployment

As of November 2006, the 6 telescopes from the OVRO array and the 9 telescopes from the BIMA array are working together to gather scientific data. Pioneering work on compensating for the image distortion resulting from turbulent water vapor distributions in the troposphere started in the fall of 2008.

The most extended configurations of the array required for viewing the finest details in astronomical images, the telescopes are separated by up to 2 km. Over these distances the variation in the time of arrival of signals at the different telescopes as they pass through different amounts of water vapor severely limits the quality of images.

By siting an SZA antenna near each of the CARMA antennas and observing a compact astronomical radio source near the source under study, the properties of the atmosphere can be measured on time scales as short as a couple of seconds. This information can be used in the data reduction process to remove a significant fraction of the degradation caused by the atmospheric scintillation.

Observations using the SZA (operating at 30 GHz) to make the atmospheric measurements started in November 2008. The SZA has also participated directly in the science operations of CARMA during experiments where all three types of telescopes were attached to the same correlator.

Observations are primarily in the 3 mm range (80–115 GHz) and the 1 mm range (210–270 GHz). These frequencies are useful for detecting many molecular gases, including the second most abundant molecule in the universe, Carbon Monoxide (CO).

Observing CO is an indirect indicator of the presence of molecular hydrogen gas (the most abundant molecule in the universe) which is difficult to detect directly. Cold dust is also detectable in this wavelength range and can be used to study planet-forming disks around stars, for example. In 2009, the OVRO 10.4 m antennas were instrumented with 27–35 GHz receivers and made observations in the centimeter band in concert with the SZA antennas.

Universities Involved

CARMA is a consortium composed of three primary groups.

California Institute of Technology, Berkeley-Illinois-Maryland Association (BIMA), University of Chicago

See also

Wikimedia Commons has media related to Combined Array for Research in Millimeter-wave Astronomy.

External links

This article is issued from Wikipedia - version of the Friday, January 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.