Completely positive map

In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition.

Definition

Let A and B be C*-algebras. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0.

Any linear map \phi:A\to B induces another map

\textrm{id} \otimes \phi : \mathbb{C}^{k \times k} \otimes A \to \mathbb{C}^{k \times k} \otimes B

in a natural way. If \mathbb{C}^{k\times k}\otimes A is identified with the C*-algebra A^{k\times k} of k\times k-matrices with entries in A, then \textrm{id}\otimes\phi acts as


\begin{pmatrix}
a_{11} & \cdots & a_{1k} \\
\vdots & \ddots & \vdots \\
a_{k1} & \cdots & a_{kk}
\end{pmatrix} \mapsto \begin{pmatrix}
\phi(a_{11}) & \cdots & \phi(a_{1k}) \\
\vdots & \ddots & \vdots \\
\phi(a_{k1}) & \cdots & \phi(a_{kk})
\end{pmatrix}.

We say that \phi is k-positive if \textrm{id}_{\mathbb{C}^{k\times k}} \otimes \Phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k.

Properties

Examples


\begin{bmatrix}
\begin{pmatrix}1&0\\0&0\end{pmatrix}&
\begin{pmatrix}0&1\\0&0\end{pmatrix}\\
\begin{pmatrix}0&0\\1&0\end{pmatrix}&
\begin{pmatrix}0&0\\0&1\end{pmatrix}
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
\end{bmatrix}.

The image of this matrix under I_2 \otimes T is


\begin{bmatrix}
\begin{pmatrix}1&0\\0&0\end{pmatrix}^T&
\begin{pmatrix}0&1\\0&0\end{pmatrix}^T\\
\begin{pmatrix}0&0\\1&0\end{pmatrix}^T&
\begin{pmatrix}0&0\\0&1\end{pmatrix}^T
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} ,
which is clearly not positive, having determinant -1. Moreover, the eigenvalues of this matrix are 1,1,1 and -1.
Incidentally, a map Φ is said to be co-positive if the composition Φ \circ T is positive. The transposition map itself is a co-positive map.
This article is issued from Wikipedia - version of the Tuesday, September 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.