Condorcet's jury theorem

Condorcet's jury theorem is a political science theorem about the relative probability of a given group of individuals arriving at a correct decision. The theorem was first expressed by the Marquis de Condorcet in his 1785 work Essay on the Application of Analysis to the Probability of Majority Decisions.[1]

The assumptions of the simplest version of the theorem are that a group wishes to reach a decision by majority vote. One of the two outcomes of the vote is correct, and each voter has an independent probability p of voting for the correct decision. The theorem asks how many voters we should include in the group. The result depends on whether p is greater than or less than 1/2:

Proof

To avoid the need for a tie-breaking rule, we assume n is odd. Essentially the same argument works for even n if ties are broken by fair coin-flips.

Now suppose we start with n voters, and let m of these voters vote correctly.

Consider what happens when we add two more voters (to keep the total number odd). The majority vote changes in only two cases:

The rest of the time, either the new votes cancel out, only increase the gap, or don't make enough of a difference. So we only care what happens when a single vote (among the first n) separates a correct from an incorrect majority.

Restricting our attention to this case, we can imagine that the first n-1 votes cancel out and that the deciding vote is cast by the n-th voter. In this case the probability of getting a correct majority is just p. Now suppose we send in the two extra voters. The probability that they change an incorrect majority to a correct majority is (1-p)p2, while the probability that they change a correct majority to an incorrect majority is p(1-p)(1-p). The first of these probabilities is greater than the second if and only if p > 1/2, proving the theorem.

Asymptotics

The probability of a correct majority decision P(n,p), when the individual probability p is close to 1/2 grows linearly in terms of p-1/2. For n voters each one having probability p of deciding correctly and for odd n (where there are no possible ties):

 P(n,p) = 1/2 + c_1 (p-1/2) + c_3 (p-1/2)^3 + O( (p-1/2)^5 )

where

 c_1 = {n  \choose { \lfloor n/2 \rfloor}} \frac{ \lfloor n/2 \rfloor +1} { 4^{\lfloor n/2 \rfloor}} = \sqrt{ \frac{2n+1}{\pi}} (1 + \frac{1}{16n^2} + O(n^{-3}) )

and the asymptotic approximation in terms of n is very accurate. The expansion is only in odd powers and c_3 < 0. In simple terms, this says that when the decision is difficult (p close to 1/2), the gain by having n voters grows proportionally to \sqrt{n}.

Limitations

This version of the theorem is correct, given its assumptions, but its assumptions are unrealistic in practice. Some objections that are commonly raised:

Nonetheless, Condorcet's jury theorem provides a theoretical basis for democracy, even if somewhat idealized, as well as a basis of the decision of questions of fact by jury trial, and as such continues to be studied by political scientists.

Notes

  1. Marquis de Condorcet. "Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix" (PNG) (in French). Retrieved 2008-03-10.
  2. see for example: Krishna K. Ladha (August 1992). "The Condorcet Jury Theorem, Free Speech, and Correlated Votes". American Journal of Political Science 36 (3): 617–634. doi:10.2307/2111584. JSTOR 2111584.
  3. Bernard Grofman; Guillermo Owen; Scott L. Feld (1983). "Thirteen theorems in search of the truth." (PDF). Theory & Decision 15 (3): 261-78. doi:10.1007/BF00125672.
  4. James Hawthorne. "Voting In Search of the Public Good: the Probabilistic Logic of Majority Judgments" (PDF). Retrieved 2009-04-20.
  5. Christian List and Robert Goodin (September 2001). "Epistemic democracy : generalizing the Condorcet Jury Theorem" (PDF). Journal of Political Philosophy 9 (3): 277–306. doi:10.1111/1467-9760.00128.
  6. Austen-Smith, David; Banks, Jeffrey S. (1996). "Information aggregation, rationality, and the Condorcet Jury Theorem". American Political Science Review 90 (1): 34–45. doi:10.2307/2082796. JSTOR 2082796.
This article is issued from Wikipedia - version of the Tuesday, February 02, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.