Conjunctive grammar

Conjunctive grammars are a class of formal grammars studied in formal language theory. They extend the basic type of grammars, the context-free grammars, with a conjunction operation. Besides explicit conjunction, conjunctive grammars allow implicit disjunction represented by multiple rules for a single nonterminal symbol, which is the only logical connective expressible in context-free grammars. Conjunction can be used, in particular, to specify intersection of languages. A further extension of conjunctive grammars known as Boolean grammars additionally allows explicit negation.

The rules of a conjunctive grammar are of the form

A \to \alpha_1 \And \ldots \And \alpha_m

where A is a nonterminal and \alpha_1, ..., \alpha_m are strings formed of symbols in \Sigma and N (finite sets of terminal and nonterminal symbols respectively). Informally, such a rule asserts that every string w over \Sigma that satisfies each of the syntactical conditions represented by \alpha_1, ..., \alpha_m therefore satisfies the condition defined by A.

Two equivalent formal definitions of the language specified by a conjunctive grammar exist. One definition is based upon representing the grammar as a system of language equations with union, intersection and concatenation and considering its least solution. The other definition generalizes Chomsky's generative definition of the context-free grammars using rewriting of terms over conjunction and concatenation.

Though the expressive means of conjunctive grammars are greater than those of context-free grammars, conjunctive grammars retain some practically useful properties of the latter. Most importantly, there are generalizations of the main context-free parsing algorithms, including the linear-time recursive descent, the cubic-time generalized LR, the cubic-time Cocke-Kasami-Younger, as well as Valiant's algorithm running as fast as matrix multiplication.

A number of theoretical properties of conjunctive grammars have been researched, including the expressive power of grammars over a one-letter alphabet and numerous undecidable decision problems. This work provided a basis for the study language equations of a more general form.

References

External links

This article is issued from Wikipedia - version of the Wednesday, April 03, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.