Cox ring
In algebraic geometry, a Cox ring is a sort of universal homogeneous coordinate ring for a projective variety, and is (roughly speaking) a direct sum of the spaces of sections of all isomorphism classes of line bundles. Cox rings were introduced by Hu & Keel (2000), based on an earlier construction by Cox (1995) for toric varieties.
References
- Cox, David A. (1995), "The homogeneous coordinate ring of a toric variety", J. Algebraic Geom. 4 (1): 17–50, MR 1299003
- Hu, Yi; Keel, Sean (2000), "Mori dream spaces and GIT", Michigan Math. J. 48: 331–348, doi:10.1307/mmj/1030132722, MR 1786494
This article is issued from Wikipedia - version of the Monday, June 01, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.