Cytochrome P450 omega hydroxylase

Cytochrome P450 omega hydroxylases, also termed Cytochrome P450 ω-hydroxylases, CYP450 omega hydroxylases, CYP450 ω-hydroxylases, CYP omega hydroxylase, CYP ω-hydroxylases, fatty acid omega hydroxylases, cytochrome P450 monooxygenases, and fatty acid monooxygenases, are a set of cytochrome P450-containing enzymes that catalyze the addition of a hydroxyl residue to a fatty acid Substrate (chemistry). The CYP omega hydroxylases are often referred to as monoxygenases; however, the monooxygenases are CYP450 enzymes that add a hydroxyl group to a wide range of xenobiotic (e.g. drugs, industrial toxins) and naturally occurring endobiotic (e.g. cholesterol) substrates, most of which are not fatty acids. The CYP450 omega hydroxylases are accordingly better viewed as a subset of monooxygenases that have the ability to hydroxylate fatty acids. While once regarded as functioning mainly in the catabolism of dietary fatty acids, the omega oxygenases are now considered critical in the production or break-down of fatty acid-derived mediators which are made by cells and act within their cells of origin as autocrine signaling agents or on nearby cells as paracrine signaling agents to regulate various functions such as blood pressure control and inflammation.

Action

The omega oxygenases metabolize fatty acids (RH) by adding a hydroxyl (OH) to their terminal (i.e. furthest from the fatty acids' carboxy residue) carbons; in the reaction, the two atoms of molecular oxygen(O2[ are reduced to one hydroxyl group and one water (H2O molecule) by the concomitant oxidation of NAD(P)H (see monooxygenase).[1][2]

RH + O2 + NADPH + H+ → ROH + H2O + NADP+

Functions

CYP450 enzymes belong to a superfamily which in humans is composed of at least 57 CYPs; within this superfamily, members of six CYP4A subfamilies, (which are CYP4A, CYP4B, CYP4F, CYP4V, CYP4X, and CYP4z) possess ω-hydroxylase activity viz., CYP4A, CYP4B, and CYP4F[3][4][5] CYP2U1 also possesses ω hydroxylase activity.[6] These CYP ω-hydroxylases can be categorized into several groups based on their substrates and consequential function

References

  1. Harayama S, Kok M, Neidle EL (1992). "Functional and evolutionary relationships among diverse oxygenases". Annu. Rev. Microbiol. 46: 565–601. doi:10.1146/annurev.mi.46.100192.003025. PMID 1444267.
  2. Schreuder HA, van Berkel WJ, Eppink MH, Bunthol C (1999). "Phe161 and Arg166 variants of p-hydroxybenzoate hydroxylase. Implications for NADPH recognition and structural stability". FEBS Lett. 443 (3): 251–255. doi:10.1016/S0014-5793(98)01726-8. PMID 10025942.
  3. Panigrahy D, Kaipainen A, Greene ER, Huang S (Dec 2010). "Cytochrome P450-derived eicosanoids: the neglected pathway in cancer". Cancer Metastasis Reviews 29 (4): 723–35. doi:10.1007/s10555-010-9264-x. PMC: 2962793. PMID 20941528.
  4. Annu Rev Pharmacol Toxicol. 2005;45:413-38. Review. PMID 15822183
  5. Annu Rev Pharmacol Toxicol. 2005;45:413-38. Review.PMID 15822183
  6. J Biol Chem. 2004 Feb 20;279(8):6305-14
  7. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27. ReviewPMID 26233909
  8. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15.PMID 18433732
  9. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27. ReviewPMID 26233909
  10. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15. Review PMID 18433732
  11. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15. Review PMID 18433732
  12. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15. Review PMID 18433732
  13. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15. Review PMID 18433732
  14. Biochem Pharmacol. 2008 Jun 15;75(12):2263-75. doi: 10.1016/j.bcp.2008.03.004. Epub 2008 Mar 15. Review PMID 18433732
  15. J Dermatol Sci. 2015 Jul;79(1):4-9. doi: 10.1016/j.jdermsci.2015.04.009. Epub 2015 Apr 30. Review.PMID: 25982146
  16. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27.PMID: 26233909
  17. O'Flaherty JT, Wykle RL, Redman J, Samuel M, Thomas M.J Immunol. 1986 Nov 15;137(10):3277-83.
  18. Biochim Biophys Acta. 2015 Apr;1851(4):340-55. doi: 10.1016/j.bbalip.2014.10.008. Epub 2014 Oct 29. Review.PMID: 25449650
  19. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27.PMID: 26233909
  20. Biochim Biophys Acta. 1996 Apr 19;1300(2):143-50
  21. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27.PMID: 26233909
  22. J Biol Chem. 2004 Feb 20;279(8):6305-14. Epub 2003 Dec 3
  23. Adv Pharmacol. 2015;74:223-62. doi: 10.1016/bs.apha.2015.05.002. Epub 2015 Jun 27.PMID: 26233909
This article is issued from Wikipedia - version of the Tuesday, April 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.