Daniel Goldston

Daniel Goldston
Born (1954-01-04) January 4, 1954
Oakland, California
Nationality American
Fields Mathematics
Institutions San Jose State University
Alma mater UC Berkeley
Doctoral advisor Russell Lehman
Known for GPY theorem in number theory
Notable awards Cole Prize (2014)

Daniel Alan Goldston (born January 4, 1954 in Oakland, California) is an American mathematician who specializes in number theory. He is currently a professor of mathematics at San Jose State University. He has an Erdos number of 2.

Goldston is best known for the following result that he, János Pintz, and Cem Yıldırım proved in 2005:[1]

\liminf_{n\to\infty}\frac{p_{n+1}-p_n}{\log p_n}=0

where p_n\ denotes the nth prime number. In other words, for every c>0\ , there exist infinitely many pairs of consecutive primes p_n\ and p_{n+1}\ which are closer to each other than the average distance between consecutive primes by a factor of c\ , i.e., p_{n+1}-p_n<c\log p_n\ .

This result was originally reported in 2003 by Goldston and Yıldırım but was later retracted.[2][3] Then Pintz joined the team and they completed the proof in 2005.

In fact, if they assume the Elliott–Halberstam conjecture, then they can also show that primes within 16 of each other occur infinitely often, which is related to the twin prime conjecture.

See also

References

External links

This article is issued from Wikipedia - version of the Monday, March 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.