Demiregular tiling

In geometry, the demiregular tilings are a set of Euclidean tessellations made from 2 or more regular polygon faces. Different authors have listed different sets of tilings. A more systematic approach looking at symmetry orbits are the 2-uniform tilings of which there are 20. Some of the demiregular ones are actually 3-uniform tilings.

20 2-uniform tilings

Grünbaum and Shephard enumerated the full list of 20 2-uniform tilings in Tilings and Paterns, 1987:

2-uniform tilings
cmm, 2*22

(44; 33.42)1
cmm, 2*22

(44; 33.42)2
pmm, *2222

(36; 33.42)1
cmm, 2*22

(36; 33.42)2
cmm, 2*22

(3.42.6; (3.6)2)2
pmm, *2222

(3.42.6; (3.6)2)1
pmm, *2222

((3.6)2; 32.62)
p4m, *442

(3.12.12; 3.4.3.12)
p4g, 4*2

(33.42; 32.4.3.4)1
pgg, 2×

(33.42; 32.4.3.4)2
p6m, *632

(36; 32.62)
p6m, *632

(36; 34.6)1
p6, 632

(36; 34.6)2
cmm, 2*22

(32.62; 34.6)
p6m, *632

(36; 32.4.3.4)
p6m, *632

(3.4.6.4; 32.4.3.4)
p6m, *632

(3.4.6.4; 33.42)
p6m, *632

(3.4.6.4; 3.42.6)
p6m, *632

(4.6.12; 3.4.6.4)
p6m, *632

(36; 32.4.12)

Ghyka's list (1946)

Ghyka lists 10 of them with 2 or 3 vertex types, calling them semiregular polymorph partitions.[1]

Plate XXVII
No. 12
4.6.12
3.4.6.4
No. 13
3.4.6.4
3.3.3.4.4
No. 13 bis.
3.4.4.6
3.3.4.3.4
No. 13 ter.
3.4.4.6
3.3.3.4.4
Plate XXIV
No. 13 quatuor.
3.4.6.4
3.3.4.3.4
No. 14
33.42
36
Plate XXVI
No. 14 bis.
3.3.4.3.4
3.3.3.4.4
36
No. 14 ter.
33.42
36
No. 15
3.3.4.12
36
Plate XXV
No. 16
3.3.4.12
3.3.4.3.4
36

Steinhaus's list (1969)

Steinhaus gives 5 examples of non-homogeneous tessellations of regular polygons beyond the 11 regular and semiregular ones.[2] (All of them have 2 types of vertices, while one is 3-uniform.)

2-uniform 3-uniform
Image 85
33.42
3.4.6.4
Image 86
32.4.3.4
3.4.6.4
Image 87
3.3.4.12
36
Image 89
33.42
32.4.3.4
Image 88
3.12.12
3.3.4.12

Critchlow's list (1970)

Critchlow identifies 14 demi-regular tessellations, with 7 being 2-uniform, and 7 being 3-uniform.

He codes letter names for the vertex types, with superscripts to distinguish face orders. He recognizes A, B, C, D, F, and J can't be a part of continuous coverings of the whole plane.

A
(none)
B
(none)
C
(none)
D
(none)
E
(semi)
F
(none)
G
(semi)
H
(semi)
J
(none)
K (2)
(reg)

3.7.42

3.8.24

3.9.18

3.10.15

3.12.12

4.5.20

4.6.12

4.8.8

5.5.10

63
L1
(demi)
L2
(demi)
M1
(demi)
M2
(semi)
N1
(demi)
N2
(semi)
P (3)
(reg)
Q1
(semi)
Q2
(semi)
R
(semi)
S (1)
(reg)

3.3.4.12

3.4.3.12

3.3.6.6

3.6.3.6

3.4.4.6

3.4.6.4

44

3.3.4.3.4

3.3.3.4.4

3.3.3.3.6

36
2-uniforms
1 2 4 6 7 10 14

(3.12.12; 3.4.3.12)

(36; 32.4.12)

(4.6.12; 3.4.6.4)

((3.6)2; 32.62)

(3.4.6.4; 32.4.3.4)

(36; 32.4.3.4)

(3.4.6.4; 3.42.6)
E+L2L1+(1)N1+GM1+M2N2+Q1Q1+(1)N1+Q2
3-uniforms
3 5 8 9 11 12 13
(3.3.4.3.4; 3.3.4.12, 3.4.3.12) (36; 3.3.4.12; 3.3.4.3.4) (3.3.4.3.4; 3.3.3.4.4, 4.3.4.6) (36, 3.3.4.3.4) (36; 3.3.4.3.4, 3.3.3.4.4) (36; 3.3.4.3.4; 3.3.3.4.4) (3.4.6.4; 3.42.6)
L1+L2+Q1L1+Q1+(1)N1+Q1+Q2Q1+(1)Q1+Q2+(1)Q1+Q2+(1)N1+N2

References

  1. Ghyka (1946) pp. 73-80
  2. Steinhaus, 1969, p.79-82.

External links

This article is issued from Wikipedia - version of the Sunday, February 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.